Warning, /coresoftware/generators/hijing/doc/documentation.tex is written in an unsupported language. File is not indexed.
0001 \documentstyle[12pt]{article}
0002 \textwidth=6.5in
0003 \textheight=9in
0004 \hoffset=-0.5in
0005 \voffset=-1in
0006 \newcommand{\doe}{This work was supported by the Director, Office of Energy
0007 Research, Division of Nuclear Physics of the Office of High
0008 Energy and Nuclear Physics of the U.S. Department of Energy
0009 under Contract No. DE-AC03-76SF00098.}
0010
0011 \begin{document}
0012
0013 \begin{titlepage}
0014
0015 \begin{flushright}
0016 {\large LBL-34246}
0017 \end{flushright}
0018 \vskip 2\baselineskip
0019 \renewcommand{\thefootnote}{\fnsymbol{footnote}}
0020 \setcounter{footnote}{0}
0021 \begin{center}
0022 \baselineskip=24pt
0023 \mbox{}\\[5ex]
0024 {\Large HIJING 1.0: A Monte Carlo Program for Parton and Particle Production
0025 in High Energy Hadronic and Nuclear Collisions{\footnote{\doe}}}\\[5ex]
0026 \baselineskip=18pt
0027 {\large Miklos Gyulassy}\\[2ex]
0028 {\em Physics Department, Columbia University, New York, NY 10027}\\[2ex]
0029 {\large Xin-Nian Wang}\\[2ex]
0030 {\em Nuclear Science Division, Mailstop 70A-3307,
0031 Lawrence Berkeley Laboratory}\\
0032 {\em University of California, Berkeley, CA 94720}\\
0033 \mbox{}\\[3ex]
0034 \today\\[5ex]
0035 \end{center}
0036
0037 \begin{abstract}
0038 \normalsize
0039 \baselineskip=24pt
0040 Based on QCD-inspired models for multiple jets production, we
0041 developed a Monte Carlo program to study jet and the associated particle
0042 production in high energy $pp$, $pA$ and $AA$ collisions. The physics behind
0043 the program which includes multiple minijet production, soft excitation,
0044 nuclear shadowing of parton distribution functions and jet interaction
0045 in dense matter is briefly discussed. A detailed description of the
0046 program and instructions on how to use it are given.
0047 \end{abstract}
0048
0049 \end{titlepage}
0050
0051 \newcommand{\lsim}
0052 {\ \raisebox{2.75pt}{$<$}\hspace{-9.0pt}\raisebox{-2.75pt}{$\sim$}\ }
0053 \newcommand{\gsim}
0054 {\ \raisebox{2.75pt}{$>$}\hspace{-9.0pt}\raisebox{-2.75pt}{$\sim$}\ }
0055
0056 \baselineskip=18pt
0057 \parindent=0.25in
0058 \abovedisplayskip=24pt
0059 \belowdisplayskip=24pt
0060
0061
0062 \begin{center}
0063 {\Large\bf PROGRAM SUMMARY}
0064 \end{center}
0065
0066 \noindent{\em Title of program}: HIJING 1.0\\
0067 \vspace{0pt}\\
0068 {\em Catalogue number}:\\
0069 \vspace{0pt}\\
0070 {\em Program obtainable from}: xnwang@nsdssd.lbl.gov\\
0071 \vspace{0pt}\\
0072 {\em Computer for which the program is designed}: VAX, VAXstation,
0073 SPARCstation and other computers with a FORTRAN 77 compiler
0074 compiler\\
0075 \vspace{0pt}\\
0076 {\em Computer}: SPARCstation ELC; {\em Installation}: Nuclear Science Division,
0077 Lawrence Berkeley Laboratory, USA\\
0078 \vspace{0pt}\\
0079 {\em Operating system}: SunOS 4.1.1\\
0080 \vspace{0pt}\\
0081 {\em Programming language used}: FORTRAN 77\\
0082 \vspace{0pt}\\
0083 {\em High speed storage required}: 90k word\\
0084 \vspace{0pt}\\
0085 {\em No. of bits in a word}: 32\\
0086 \vspace{0pt}\\
0087 {\em Peripherals used}: terminal for input, terminal or printer for output\\
0088 \vspace{0pt}\\
0089 {\em No. of lines in combined program and test deck}: 6397 \\
0090 \vspace{0pt}\\
0091 {\em Keywords}: relativistic heavy ion collisions, quark-gluon plasma,
0092 partons, hadrons, nuclei, jets, minijets, particle production,
0093 parton shadowing, jet quenching.\\
0094 \vspace{0pt}\\
0095 {\em Nature of the physical problem}\\
0096 In high-energy hadron and nuclear interactions, multiple minijet
0097 production becomes more and more important. Especially in relativistic
0098 heavy-ion collisions, minijets are expected to dominate transverse
0099 energy production in the central rapidity region. Particle production
0100 and correlation due to minijets must be investigated in order to
0101 recognize new physics of quark-gluon plasma formation.
0102 Due to the complication of soft interactions,
0103 minijet production can only be incorporated in a pQCD
0104 inspired model. The parameters in this model have to be tested first
0105 against the wide range of data in $pp$ collisions. When extrapolating
0106 to heavy-ion collisions, nuclear effects such as parton shadowing and
0107 final state interactions have to be considered.\\
0108 \vspace{0pt}\\
0109 {\em Method of solution}\\
0110 Based on a pQCD-inspired model, multiple minijet production
0111 is combined together with Lund-type model for soft interactions. Within
0112 this model, triggering on large $P_T$ jet production automatically
0113 biases toward enhanced minijet production. Binary approximation and Glauber
0114 geometry for multiple interaction are used to simulate $pA$ and $AA$
0115 collisions. A parametrized parton distribution function inside
0116 a nucleus is used to take into account parton shadowing. Jet quenching
0117 is modeled by an assumed energy loss $dE/dz$ of partons traversing
0118 the produced dense matter. A simplest color configuration is assumed
0119 for the multiple jet system and Lund jet fragmentation model is used
0120 for the hadronization.\\
0121 \vspace{0pt}\\
0122 {\em Restrictions on the complexity of the problem}\\
0123 The program is only valid for collisions with c.m.
0124 energy ($\sqrt{s}$) above 4 GeV/n. For central $Pb+Pb$ collisions,
0125 some arrays have to be extended above $\sqrt{s}=10$ TeV/n.\\
0126 \vspace{0pt}\\
0127 {\em Typical running time}\\
0128 The running time largely depends on the energy and the type of
0129 collisions. For example (not including initialization):\\
0130 \begin{tabbing}
0131 $Pb+Pb$(central) AAAA\= $\sqrt{s}$=6.4 TeV/n \= $\sim$ events/min \kill
0132 $pp$ \> $\sqrt{s}$=200 GeV \> $\sim$ 700 events/min.\\
0133 $pp$ \> $\sqrt{s}$=1.8 TeV \> $\sim$ 250 events/min.\\
0134 $Au+Au$(central) \> $\sqrt{s}$=200 GeV/n \> $\sim$ 1 event/min.\\
0135 $Pb+Pb$(central) \> $\sqrt{s}$=6.4 TeV/n \> $\sim$ 1 event/10 min.
0136 \end{tabbing}
0137 \mbox{}\\
0138 {\em Unusual features of the program}\\
0139 The random number generator used in the program is a
0140 VAX VMS system subroutine RAN(NSEED). When compiled on a
0141 SPARCstation, {\tt -xl} flag should be used. This function
0142 is not portable. Therefore, one should supply a random
0143 number generator to replace this function whenever a problem
0144 is encountered.
0145
0146 \newpage
0147
0148 \begin{center}
0149 {\Large\bf LONG WRITE-UP}
0150 \end{center}
0151
0152 \section{Introduction}
0153
0154 One of the goals of ultrarelativistic heavy ion experiments is
0155 to study the quark-gluon substructure of nuclear matter and the
0156 possibility of a phase transition from hadronic matter to quark-gluon
0157 plasma (QGP)\cite{review} at extremely high energy densities.
0158 Unlike heavy ion collisions
0159 at the existing AGS/BNL and SPS/CERN energies, most of the physical
0160 processes occurring at very early times in the violent collisions of
0161 heavy nuclei at RHIC/BNL and the proposed LHC/CERN energies involve
0162 hard or semihard parton scatterings\cite{kaja}
0163 which will result in enormous amount of jet production and
0164 can be described in terms of perturbative QCD (pQCD).
0165
0166 The concept of jets and their association with
0167 hard parton scatterings has been well established in hadronic
0168 interactions and they have been proven to play a major role
0169 in every aspect of $p\overline{p}$ collisions at CERN
0170 $\mbox{Sp}\overline{\mbox{p}}\mbox{S}$ and Fermilab Tevatron
0171 energies\cite{geist}. Experimentally, jets are identified
0172 as hadronic clusters whose transverse energy $E_T$ can be
0173 reconstructed from the calorimetrical study\cite{ua2jet,alba88}
0174 of the events. However, when the transverse energy of a jet becomes
0175 smaller, $E_T<5$ GeV, it is increasingly difficult to
0176 resolve it from the underlying background\cite{ua1minijet},
0177 though theoretically, we would
0178 expect that hard parton scatterings must continue to lower
0179 transverse momentum. We usually refer to those as minijets
0180 whose transverse energy are too low to be resolved
0181 experimentally but the associated parton scattering
0182 processes may still be calculable via pQCD. Assuming
0183 independent production, it has been shown that
0184 the multiple minijets production is important in
0185 $p\bar{p}$ interactions to account for the increase
0186 of total cross section\cite{gaisser} and the violation
0187 of Koba-Nielsen-Olesen (KNO) scaling of the charged
0188 multiplicity distributions\cite{sjostrand,wang91a}.
0189
0190 In high energy heavy ion collisions, minijets
0191 have been estimated\cite{kaja} to produce 50\% (80\%) of
0192 the transverse energy in central heavy ion collisions at
0193 RHIC (LHC) energies. While not resolvable as distinct jets,
0194 they would lead to a wide variety of correlations, as in
0195 $pp$ or $p\bar{p}$ collisions, among observables such as
0196 multiplicity, transverse momentum, strangeness, and
0197 fluctuations that compete with the expected signatures
0198 of a QGP. Therefore, it is especially important to
0199 calculate these background processes. Furthermore,
0200 the calculation could also provide the initial
0201 condition to address the issues of thermalization
0202 and equilibration of a quark gluon plasma. In this
0203 respect, the interactions of high $P_T$ jets inside
0204 the dense medium is also interesting since the
0205 variation of jet quenching phenomenon may serve
0206 as one of the signatures of the QGP transition\cite{gyu89}.
0207
0208
0209 To provide a theoretical laboratory for studying
0210 jets in high-energy nuclear interactions and testing the
0211 proposed signatures such as jet quenching\cite{gyu89},
0212 we have developed a Monte Carlo model,
0213 HIJING (heavy ion jet interaction generator)\cite{hijing},
0214 which combines a QCD inspired model for jet production with the
0215 Lund model\cite{lund} for jet fragmentation.
0216 The formulation of HIJING was guided by the Lund FRITIOF\cite{fritiof}
0217 and Dual Parton model\cite{dpm} for soft $A+B$ reactions at
0218 intermediate energies ($\sqrt{s}\lsim 20$ GeV/nucleon) and
0219 the successful implementation of pQCD processes in
0220 PYTHIA\cite{sjostrand,pythia}
0221 model for hadronic collisions. HIJING is designed
0222 mainly to explore the range of possible initial conditions
0223 that may occur in relativistic heavy ion collisions. To study
0224 the nuclear effects, we also included nuclear shadowing\cite{shadow1}
0225 of parton structure functions and a schematic model of final
0226 state interaction of high $P_T$ jets in terms of an effective
0227 energy loss parameter, $dE/dz$\cite{wang92a,gyu92}.
0228 At $pp$ and $p\bar{p}$ level,
0229 HIJING also made an important effort to address the interplay
0230 between low $P_T$ nonperturbative physics and the hard pQCD
0231 processes. This Monte Carlo model has been tested extensively
0232 against data on $p+p(\bar{p})$ over a wide energy range,
0233 $\sqrt{s}=50$-1800 GeV and $p+A$, $A+A$ collisions at moderate
0234 energies $\sqrt{s}\leq 20$ GeV/n \cite{hijing,hijingpp}.
0235 However, in this version of HIJING program, the space-time
0236 development of final state interaction among produced
0237 partons\cite{geiger} and hadrons was not considered.
0238
0239 In this paper, we present a detailed description of
0240 the Monte Carlo program together with a brief summary of
0241 physical motivations. Since the program uses subroutines
0242 of PYTHIA to generate the kinetic variables for each
0243 hard scattering and the associated radiations, and JETSET
0244 for string fragmentation, we refer readers to the original
0245 publications\cite{pythia,jetset} for the description of these
0246 programs. The physics involved in HIJING has been discussed
0247 extensively\cite{hijing,hijingpp,wang92a}. This paper is
0248 intended to be a documented
0249 reference for the overall structure and detailed description
0250 of the program.
0251
0252 The organization of the paper is as the following.
0253 In Section 2, we give a brief review of the QCD inspired model
0254 for multiple jets production and soft interaction in
0255 nucleon-nucleon collisions. The nuclear effects on jet
0256 production and fragmentation are discussed in Section 3.
0257 Section 4 will give a detailed description of the program.
0258 Finally in Section 5 we will give instructions on how to
0259 use the program and some simple examples are provided.
0260
0261 \section{Parton Production in $pp$ Collisions}
0262
0263 The QCD inspired model is based on the assumption of
0264 independent production of multiple minijets. It determines
0265 the number of minijets per nucleon-nucleon collisions.
0266 For each hard or semihard interaction the kinetic variables of
0267 the scattered partons are determined by calling PYTHIA\cite{pythia}
0268 subroutines. The scheme for the accompanying soft interactions
0269 is similar to FRITIOF model\cite{fritiof} with some difference
0270 in the successive soft excitation of the leading quarks or
0271 diquarks and $P_T$ transfer involved. Since minijet production
0272 is dominated by gluon scatterings, we assume that quark
0273 scatterings only involve valence quarks and restrict the subsequent
0274 hard processes to gluon-gluon scatterings. Simplification is
0275 also made for the color flow in the case of multiple jet
0276 production. Produced gluons are ordered in their rapidities
0277 and then connected with their parent valence quarks or diquarks
0278 to form string systems. Finally, fragmentation subroutine of JETSET
0279 is called for hadronization.
0280
0281
0282 \subsection{Cross sections}
0283 \label{sec:jet1}
0284
0285 In pQCD, the cross section of hard parton scatterings
0286 can be written as\cite{eichten}
0287 \begin{equation}
0288 \frac{d\sigma_{jet}}{dP_T^2dy_1dy_2} =
0289 K\sum_{a,b} x_1 x_2 f_a(x_1,P_T^2)f_b(x_2,P_T^2)
0290 d\sigma^{ab}(\hat{s},\hat{t},\hat{u})/d\hat{t}, \label{eq:sjet1}
0291 \end{equation}
0292 where the summation runs over all parton species, $y_1$,$y_2$
0293 are the rapidities of the scattered partons and $x_1$,$x_2$ are
0294 the fractions of momentum carried by the initial partons and
0295 they are related by $x_1=x_T(e^{y_1}+e^{y_2})/2$,
0296 $x_2=x_T(e^{-y_1}+e^{-y_2})$, $x_T=2P_T/\sqrt{s}$. A factor,
0297 $K\approx 2$ accounts roughly for the higher order corrections.
0298 The default structure functions, $f_a(x,Q^2)$, in HIJING are taken
0299 to be Duke-Owens structure function set 1\cite{duke}.
0300 In future versions some other new parametrizations might be included.
0301
0302 Integrating Eq.~\ref{eq:sjet1} with a low $P_T$
0303 cutoff $P_0$, we can calculate the total inclusive jet cross
0304 section $\sigma_{jet}$. The average number of semihard parton collisions
0305 for a nucleon-nucleon collision at impact parameter $b$ is
0306 $\sigma_{jet}T_N(b)$, where $T_N(b)$ is partonic overlap function
0307 between the two nucleons. In terms of a semiclassical
0308 probabilistic model\cite{gaisser,wang91a,heureux}, the probability
0309 for multiple minijets production is then
0310 \begin{equation}
0311 g_j(b)=\frac{[\sigma_{jet}T_N(b)]^j}{j!}e^{-\sigma_{jet}T_N(b)},\;\;
0312 j\geq 1. \label{eq:sjet3}
0313 \end{equation}
0314 Similarly, we can also represent the soft interactions by
0315 an inclusive cross section $\sigma_{soft}$ which, unlike
0316 $\sigma_{jet}$, can only be determined phenomenologically.
0317 The probability for only soft interactions without any hard
0318 processes is then,
0319 \begin{equation}
0320 g_0(b)=[1-e^{-\sigma_{soft}T_N(b)}]e^{-\sigma_{jet}T_N(b)}.
0321 \label{eq:sjet4}
0322 \end{equation}
0323 We have then the total inelastic cross section for nucleon-nucleon
0324 collisions,
0325 \begin{eqnarray}
0326 \sigma_{in}&=&\int{d^2b}\sum_{j=0}^{\infty}g_j(b) \nonumber \\
0327 &=&\int{d^2b}[1-e^{-(\sigma_{soft}+\sigma_{jet})T_N(b)}].
0328 \label{eq:cin}
0329 \end{eqnarray}
0330 Define a real eikonal function,
0331 \begin{equation}
0332 \chi(b,s)\equiv\frac{1}{2}\sigma_{soft}(s)T_N(b,s)+
0333 \frac{1}{2}\sigma_{jet}(s)T_N(b,s), \label{eq:eiko}
0334 \end{equation}
0335 we have the elastic, inelastic, and total cross sections of
0336 nucleon-nucleon collisions,
0337 \begin{equation}
0338 \sigma_{el}=\pi\int_{0}^{\infty}db^2\left[1-
0339 e^{-\chi(b,s)}\right]^2, \label{eq:cin1}
0340 \end{equation}
0341 \begin{equation}
0342 \sigma_{in}=\pi\int_{0}^{\infty}db^2\left[1-
0343 e^{-2\chi(b,s)}\right],\label{eq:cin2}
0344 \end{equation}
0345 \begin{equation}
0346 \sigma_{tot}=2\pi\int_{0}^{\infty}db^2\left[1-
0347 e^{-\chi(b,s)}\right],\label{eq:cin3}
0348 \end{equation}
0349 We assume that the parton density in a nucleon can be
0350 approximated by the Fourier transform of a dipole form factor.
0351 The overlap function is then,
0352 \begin{equation}
0353 T_N(b,s)=2\frac{\chi_0(\xi)}{\sigma_{soft}(s)},\label{eq:over1}
0354 \end{equation}
0355 with
0356 \begin{equation}
0357 \chi_0(\xi)=\frac{\mu_0^2}{96}(\mu_0 \xi)^3 K_3(\mu_0 \xi),
0358 \;\; \xi=b/b_0(s),\label{eq:over2}
0359 \end{equation}
0360 where $\mu_0=3.9$ and $\pi b_0^2(s)\equiv\sigma_0=\sigma_{soft}(s)/2$
0361 is a measure of the geometrical size of the nucleon. The
0362 eikonal function then can be written as,
0363 \begin{equation}
0364 \chi(b,s)\equiv\chi(\xi,s)
0365 =[1+\sigma_{jet}(s)/\sigma_{soft}(s)]\chi_0(\xi).
0366 \end{equation}
0367
0368 $P_0\simeq 2$ GeV/$c$ and a constant value of
0369 $\sigma_{soft}(s)=57$ mb are chosen to fit the experimental
0370 data on cross sections\cite{wang91a} in $pp$ and $p\bar{p}$
0371 collisions. We shall follow the equations listed above to simulate
0372 multiple jets production at the level of nucleon-nucleon
0373 collisions in HIJING Monte Carlo program. Once the number
0374 of hard scatterings is determined, we then use PYTHIA to generate
0375 the kinetic variables of the scattered partons and the initial
0376 and final state radiations.
0377
0378 \subsection{Jet triggering}
0379 \label{sec:jet2}
0380
0381
0382 Because the differential cross section of jet production
0383 decreases for several orders in magnitude from small to
0384 large $P_T$, we often have to trigger on jet production
0385 with specified $P_T$ in order to increase the simulation
0386 efficiency. The triggering can then change the probability
0387 of multiple minijet production and thus the whole event
0388 structure. In particular, such rare processes of large
0389 $P_T$ scatterings most often occur when the impact
0390 parameter of nucleon-nucleon collision is small so that
0391 the partonic overlap is large. At small impact parameters,
0392 the production of multiple jets is then enhanced.
0393
0394 If we want to trigger on events which have at least one
0395 jet with $P_T$ above $P_T^{trig}$, the conditional
0396 probability for multiple minijet production in the
0397 triggered events is then\cite{hijing},
0398 \begin{equation}
0399 g_j^{trig}(b) = \frac{[\sigma_{jet}(P_0)T_N(b)]^j}{j!}
0400 \left\{1-\left[\frac{\sigma_{jet}(P_0)-\sigma_{jet}(P_T^{trig})}
0401 {\sigma_{jet}(P_0)}\right]^j\right\}e^{-\sigma_{jet}(P_0)T_N(b)}.
0402 \label{eq:trigjet4}
0403 \end{equation}
0404 It is obvious that $g_j^{trig}(b)$ returns back to $g_j(b)$
0405 (Eq. \ref{eq:sjet3}) when $P_T^{trig}=P_0$. Summing over $j\geq 1$
0406 leads to the expected total probability for having at least one
0407 jet with $P_T>P_T^{trig}$,
0408 \begin{equation}
0409 g^{trig}(b)=1-e^{-\sigma_{jet}(P_T^{trig})T_N(b)},
0410 \label{eq:trigjet5}
0411 \end{equation}
0412
0413 Since $g_j^{trig}(b)$ differs from $g_j(b)$, the
0414 triggering of a particular jet therefore has changed the
0415 production rates of the other jets in the same event.
0416 This triggering effect is especially significant when we
0417 consider large $P_T^{trig}$. It becomes more probable to
0418 produce multiple jets due to the triggering on a high $P_T$ jet.
0419 In HIJING, we implement Eq.~\ref{eq:trigjet4} by simulating
0420 two Poisson-like multiple jet distributions with inclusive
0421 cross sections $\sigma_{jet}(P_0)-\sigma_{jet}(P_T^{trig})$
0422 and $\sigma_{jet}(P_T^{trig})$ respectively. We demand that
0423 the second one must have at least one jet and convolute the
0424 two together. The resultant distribution will be the
0425 triggered distribution.
0426
0427 \subsection{Soft interactions}
0428
0429 Besides the processes with large transverse momentum
0430 transfer which are described by pQCD, there are also many
0431 small $P_T$ exchanges or soft interactions between two colliding
0432 hadrons. We adopt a variant of the multiple string phenomenological
0433 model for such soft interactions in which multiple soft gluon
0434 exchanges between valence quarks or diquarks lead to longitudinal
0435 string-like excitations. Gluon production from hard processes
0436 and soft radiations are included as kinks in the strings.
0437 The strings then hadronize according to Lund JETSET7.2 fragmentation
0438 scheme.
0439
0440 In the center of mass frame of two colliding nucleons
0441 with initial light-cone momenta
0442 \begin{equation}
0443 p_1=(p_1^+,\frac{m_1^2}{p_1^+},{\bf 0}_T),\;\;\;\;
0444 p_2=(\frac{m_2^2}{p_2^-}, p_2^-,{\bf 0}_T),
0445 \end{equation}
0446 and $(p_1+p_2)^2=s$, the excited strings will have final
0447 momenta
0448 \begin{equation}
0449 p'_1=(p_1^+ -P^+,\frac{m_1^2}{p_1^+}+P^-, {\bf P}_T),\;\;\;\;
0450 p'_2=(\frac{m_2^2}{p_2^-}+P^+, p_2^- -P^-,-{\bf P}_T),
0451 \end{equation}
0452 after a collective momentum exchange $P=(P^+,P^-,{\bf P}_T)$.
0453 The soft interactions by definition have small transverse
0454 momentum transfer, $P_T<1$ GeV/$c$, while large effective
0455 light-come momentum\cite{fritiof} exchange can give rise to
0456 two excited strings with large invariant masses. Defining
0457 \begin{equation}
0458 P^+=x_+\sqrt{s}-\frac{m_2^2}{p_2^-},\;\;\;\;
0459 P^-=x_-\sqrt{s}-\frac{m_1^2}{p_1^+},
0460 \end{equation}
0461 the excited masses of the two strings will be
0462 \begin{equation}
0463 M_1^2=x_-(1-x_+)s-P_T^2, \;\;\;\; M_2^2=x_+(1-x_-)s-P_T^2,
0464 \label{eq:strnms}
0465 \end{equation}
0466 respectively. If we require that the excited string masses must
0467 have a minimum value $M_{cut}$, then the kinematically
0468 allowed region of $x^{\pm}$
0469 will be
0470 \begin{equation}
0471 x_{\mp}(1-x_{\pm})\geq M_{Tcut}^2/s, \label{eq:xregn}
0472 \end{equation}
0473 where $M_{Tcut}^2=M_{cut}^2+P_T^2$.
0474 The condition for the above equations to be valid is
0475 \begin{equation}
0476 \sqrt{s}\geq 2M_{Tcut}. \label{eq:smin}
0477 \end{equation}
0478 This is the minimum colliding energy we will require to produce
0479 two excited strings which can be fragmented into hadrons by the
0480 Lund string fragmentation model. We have chosen $M_{cut}$ to be
0481 1.5 GeV/$c^2$ in all our calculations involving nucleon collisions.
0482 When the energy is smaller than what Eq.~\ref{eq:smin}
0483 requires, we assume that the interaction can be described by
0484 other processes like single diffractive or $N^{\star}$ (or $\rho$,
0485 $K^{\star}$ in cases of pions and kaons collisions) excitation.
0486 However, we usually do not expect that the model is still valid
0487 at such low energies. Eq.~\ref{eq:smin} also serves as to
0488 determine the maximum $P_T$ that the strings can obtain from
0489 the soft interactions. If hard interactions are involved,
0490 the kinetic boundary of string formation is reduced by the
0491 hard scatterings.
0492
0493 In order to best fit the rapidity distributions of charged
0494 particles, we choose the following distributions for light-cone
0495 momentum transfer,
0496 \begin{equation}
0497 P(x_{\pm})=\frac{(1.0-x_{\pm})^{1.5}}
0498 {(x_{\pm}^2+c^2/s)^{1/4}},
0499 \label{eq:xdistr1}
0500 \end{equation}
0501 for nucleons and
0502 \begin{equation}
0503 P(x_{\pm})=\frac{1}{(x_{\pm}^2+c^2/s)^{1/4}
0504 [(1-x_{\pm})^2+c^2/s]^{1/4}},
0505 \label{eq:xdistr2}
0506 \end{equation}
0507 for mesons, where $c=0.1$ GeV is a cutoff for computational
0508 purpose with little theoretical consequences in the model.
0509 For single-diffractive events whose cross section
0510 can be obtained from an empirical parametrization\cite{goulianos},
0511 we fix the mass of the diffractive hadron to be its own or its
0512 vector state excitation and find the mass of the single excited
0513 string according to the well known distribution,
0514 \begin{equation}
0515 P(x_{\pm})=\frac{1}{(x_{\pm}^2+c^2/s)^{1/2}}, \label{eq:xdistr3}
0516 \end{equation}
0517 which lead to the experimentally observed\cite{goulianos}
0518 mass distribution $dM^2/M^2$ of the disassociated hadrons.
0519
0520 Before fragmentation, the excited strings are also assumed to
0521 have soft gluon radiation induced by the soft interactions. Such
0522 soft gluon radiation can be approximated by color dipole model
0523 as has been successfully implemented in ARIADNE Monte Carlo
0524 program\cite{dipole}. In HIJING, we adopted subroutines AR3JET
0525 and ARORIE from FRITIOF 1.7\cite{fritiof} to simulate the dipole
0526 radiation which appear as gluon kinks in the string. Since minijets
0527 are treated explicitly via pQCD, we limit the transverse momentum
0528 of the radiated gluons below the minijet cutoff $P_{0}=2$ GeV/$c$.
0529 The limitation on the transverse momentum is a characteristic
0530 feature of induced bremsstrahlung due to soft exchanges\cite{gunion}.
0531 The invariant mass cutoff for strings to radiate is fixed at
0532 $M_{cut}^{rad}=2$ GeV/$c^2$ by default.
0533
0534
0535 \subsection{$P_T$ kick from soft interactions}
0536
0537
0538 As described in the above, hard or semihard scatterings in our
0539 model have at least transverse momentum of $P_T\geq P_0$. The value of
0540 $P_0$ we use is the result of a model dependent fit of calculated cross
0541 sections to the experimental values. One can imagine that the
0542 corresponding soft interactions, which are characterized by inclusive
0543 cross section $\sigma_{soft}$, will depend on $P_0$. For such
0544 processes, we include an extra low $P_T<P_0$ transfer to the
0545 valence quarks or diquarks at string end points. We assume a
0546 distribution for the $P_T$ kick which extrapolates smoothly to
0547 the high $P_T$ regime of hard scatterings but vary more slowly
0548 for $P_T\ll P_0$,
0549 \begin{equation}
0550 f_{kick}(P_T)\approx\frac{\theta(P_0-P_T)}{(P_T^2+c^2)
0551 (P_T^2+P_{0}^2)},\label{eq:kick}
0552 \end{equation}
0553 where $c=0.1$ GeV/$c$. In practice, the distribution will follow
0554 a Gaussian form when $P_T>P_0$. Since diquarks are composites,
0555 we also assume that $P_T$ transfer to a diquark is relatively
0556 suppressed by a form factor with a scale of 1 GeV/$c$.
0557
0558 This $P_T$ kick to the quarks or diquarks during the soft
0559 interactions will provide an extra increase in transverse momentum
0560 to produced hadrons in order to fit the experimental data at low
0561 energies\cite{hijing}. Otherwise, the transverse momentum from pair
0562 production in the default Lund string fragmentation is not enough
0563 to account for the higher $P_T$ tail in low energy $pp$ collisions.
0564
0565 \section{Parton Production in $pA$ and $AA$ Collisions}
0566
0567 To include the nuclear effects on jet production and
0568 fragmentation, we also consider the EMC\cite{shadow1}
0569 effect of the parton structure functions in nuclei and the
0570 interaction of the produced jets with the excited nuclear
0571 matter in heavy ion collisions.
0572
0573
0574 \subsection{Binary approximation and initial state interaction}
0575
0576
0577
0578 We assume that a nucleus-nucleus collision can be decomposed
0579 into binary nucleon-nucleon collisions which generally involve the
0580 wounded nucleons. In a string picture, the wounded nucleons become strings
0581 excited along the beam direction. At high energy, the excited strings
0582 are assumed to interact again like the ordinary nucleon-nucleon
0583 collisions before they fragment. Unlike FRITIOF model, we allow
0584 an excited string to be de-excited within the kinematic limits
0585 in the subsequent collisions.
0586 The binary approximation can also be applied to rare hard
0587 scatterings which involve only independent pairs of partons. The
0588 probability for a given parton to suffer multiple high $P_T$
0589 scatterings is small and is not implemented in the current
0590 version of the program. We employ a three-parameter Wood-Saxon
0591 nuclear density to compute the number of binary collisions
0592 at a given impact parameter.
0593
0594 For each one of these binary collisions, we use
0595 the eikonal formalism as given in Section~\ref{sec:jet1}
0596 to determine the probability of collision, elastic or
0597 inelastic and the number of jets it produces. After simulation
0598 of hard processes, the energy of the scattered partons is
0599 subtracted from the nucleon and the remaining energy is used
0600 in the soft interaction as in ordinary soft nucleon-nucleon
0601 collisions. The excited string system minus the scattered
0602 partons suffers further collisions according to the geometrical
0603 probability.
0604
0605 We assign one of the two scattered partons per hard
0606 scattering to each participating nucleon or they may form an
0607 independent single ($q-\bar{q}$) string system. After all
0608 binary collisions are processed, we then connect the scattered
0609 partons in the associated nucleons with the corresponding
0610 valence quarks and diquarks to form string systems. The strings
0611 are then fragmented into particles.
0612
0613 \subsection{Nuclear shadowing effect}
0614
0615 One of the most important nuclear effects in relativistic
0616 heavy ion collisions is the nuclear modification of parton
0617 structure functions. It has been observed\cite{shadow1}
0618 that the effective number of quarks and antiquarks in a
0619 nucleus is depleted in the low region of $x$. Though gluon
0620 shadowing has not been studied experimentally, we will assume
0621 that the shadowing effect for gluons and quarks is the same.
0622 We also neglect the QCD evolution of the shadowing effect in the
0623 current version. There is no experimental evidence for significant
0624 $Q$ dependence of the nuclear effect on the quark structure functions.
0625 However, theoretical study\cite{eskola93} shows that gluon shadowing may
0626 evolve with $Q$.
0627
0628 At this stage, the experimental data unfortunately
0629 can not fully determine the $A$ dependence of the shadowing.
0630 We will follow the $A$ dependence as proposed in
0631 Ref.\cite{shadow2} and use the following parametrization,
0632 \begin{eqnarray}
0633 R_A(x)&\equiv&\frac{f_{a/A}(x)}{Af_{a/N}(x)} \nonumber\\
0634 &=&1+1.19\ln^{1/6}\!A\,[x^3-1.5(x_0+x_L)x^2+3x_0x_Lx]\nonumber\\
0635 & &-[\alpha_A-\frac{1.08(A^{1/3}-1)}{\ln(A+1)}\sqrt{x}]
0636 e^{-x^2/x_0^2},\label{eq:shadow}\\
0637 \alpha_A&=&0.1(A^{1/3}-1),\label{eq:shadow1}
0638 \end{eqnarray}
0639 where $x_0=0.1$ and $x_L=0.7$. The term proportional to $\alpha_A$ in
0640 Eq.~\ref{eq:shadow} determines the shadowing for $x<x_0$ with the
0641 most important nuclear dependence, while the rest gives the overall
0642 nuclear effect on the structure function in $x>x_0$ with some very slow
0643 $A$ dependence. This parametrization can fit the overall nuclear
0644 effect on the quark structure function in the small and medium
0645 $x$ region\cite{hijing}.
0646
0647
0648 To take into account of the impact parameter dependence,
0649 we assume that the shadowing effect $\alpha_A$ is proportional
0650 to the longitudinal dimension of the nucleus along the straight
0651 trajectory of the interacting nucleons. We thus parametrize
0652 $\alpha_A$ in Eq.~\ref{eq:shadow} as
0653 \begin{equation}
0654 \alpha_A(r)=0.1(A^{1/3}-1)\frac{4}{3}\sqrt{1-r^2/R_A^2},
0655 \label{eq:rshadow}
0656 \end{equation}
0657 where $r$ is the transverse distance of the interacting
0658 nucleon from its nucleus center and $R_A$ is the radius of the
0659 nucleus. For a sharp sphere nucleus with overlap function
0660 $T_A(r)=(3A/2\pi R_A^2)\sqrt{1-r^2/R_A^2}$, the averaged
0661 $\alpha_A(r)$ is $\alpha_A=\pi\int_0^{R_A^2}dr^2 T_A(r)\alpha_A(r)/A$.
0662 Because the rest of Eq.~\ref{eq:shadow} has a very slow $A$
0663 dependence, we will only consider the impact parameter dependence
0664 of $\alpha_A$. After all, most of the jet productions occur in
0665 the small $x$ region where only shadowing is important.
0666
0667 To simplify the calculation during the Monte Carlo
0668 simulation, we can decompose $R_A(x,r)$ into two parts,
0669 \begin{equation}
0670 R_A(x,r)\equiv R_A^0(x)-\alpha_A(r)R_A^s(x),
0671 \end{equation}
0672 where $\alpha_A(r)R_A^s(x)$ is the term proportional to $\alpha_A(r)$
0673 in Eq.~\ref{eq:shadow} with $\alpha_A(r)$ given in Eq.~\ref{eq:rshadow}
0674 and $R_A^0(x)$ is the rest of $R_A(x,r)$. Both $R_A^0(x)$ and $R_A^s(x)$
0675 are now independent of $r$. The effective jet production cross section
0676 of a binary nucleon-nucleon interaction in $A+B$ nuclear collisions
0677 is then,
0678 \begin{equation}
0679 \sigma_{jet}^{eff}(r_A,r_B)=\sigma_{jet}^0-\alpha_A(r_A)\sigma_{jet}^A
0680 -\alpha_B(r_B)\sigma_{jet}^B
0681 +\alpha_A(r_A)\alpha_B(r_B)\sigma_{jet}^{AB},\label{eq:sjetab}
0682 \end{equation}
0683 where $\sigma_{jet}^0$, $\sigma_{jet}^A$, $\sigma_{jet}^B$ and
0684 $\sigma_{jet}^{AB}$ can be calculated through Eq.~\ref{eq:sjet1} by
0685 multiplying \\
0686 $f_a(x_1,P_T^2)f_b(x_2,P_T^2)$ in the integrand with
0687 $R_A^0(x_1)R_B^0(x_2)$, $R_A^s(x_1)R_B^0(x_2)$, $R_A^0(x_1)R_B^s(x_2)$ and
0688 $R_A^s(x_1)R_B^s(x_2)$ respectively. With calculated values of
0689 $\sigma_{jet}^0$, $\sigma_{jet}^A$, $\sigma_{jet}^B$ and $\sigma_{jet}^{AB}$,
0690 we will know the effective jet cross section
0691 $\sigma_{jet}^{eff}$ for any binary nucleon-nucleon collision.
0692
0693
0694
0695 \subsection{Final state parton interaction}
0696
0697
0698
0699 Another important nuclear effect on the jet
0700 production in heavy ion collisions is the final state
0701 integration. In high energy heavy ion collisions, a dense
0702 hadronic or partonic matter must be produced in the central
0703 region. Because this matter can extend over a transverse
0704 dimension of at least $R_A$, jets with large $P_T$ from
0705 hard scatterings have to traverse this hot environment. For
0706 the purpose of studying the property of the dense matter
0707 created during the nucleus-nucleus collisions, it is
0708 important to investigate the interaction of jets with the
0709 matter and the energy loss they suffer during their
0710 journey out. It is estimated\cite{gyu92,dedx} that the gluon
0711 bremsstrahlung induced by soft interaction dominate the
0712 energy loss mechanism.
0713
0714 We model the induced radiation in HIJING via a simple
0715 collinear gluon splitting scheme with given energy loss $dE/dz$.
0716 The energy loss for gluon jets is twice that of quark jets\cite{dedx}.
0717 We assume that interaction only occur with the locally comoving
0718 matter in the transverse direction. The interaction points are
0719 determined via a probability
0720 \begin{equation}
0721 dP=\frac{d\ell}{\lambda_s}e^{-\ell/\lambda_s},
0722 \end{equation}
0723 with given mean free path $\lambda_s$, where $\ell$ is the
0724 distance the jet has traveled after its last interaction.
0725 The induced radiation is simulated by transferring a part of
0726 the jet energy $\Delta E(\ell)=\ell dE/z$ as a gluon kink to
0727 the other string which the jet interacts with. We continue
0728 the procedure until the jet is out of the whole excited system
0729 or when the jet energy is smaller than a cutoff below which
0730 a jet can not loss energy any more. We take this cutoff as
0731 the same as the cutoff $P_0$ for jet production. To determine
0732 how many and which excited strings could interact with the
0733 jet, we also have to assume a cross section of jet interaction so that
0734 excited strings within a cylinder of radius $r_s$ along the jet
0735 direction could interact with the jet. $\lambda_s$
0736 should be related to $r_s$ via the density of the system of excited
0737 strings. We simply take them as two parameters in our model.
0738
0739
0740 \section{Program Description}
0741
0742
0743 HIJING 1.0, written in FORTRAN 77 is a Monte Carlo
0744 simulation package for parton and particle production
0745 in high energy hadron-hadron, hadron-nucleus,
0746 and nucleus-nucleus collisions. It consists of subroutines for
0747 physics simulation and common blocks for parameters and event
0748 records. Users have to provide their own main program where desired
0749 parameters and event type are specified, and simulated events
0750 can be studied. HIJING 1.0 uses PYTHIA 5.3 to generate kinetic
0751 variables for each hard scattering and JETSET 7.2 for jet
0752 fragmentation. Therefore, HIJING 1.0 uses the same particle
0753 flavor code (included in the appendix)
0754 as JETSET 7.2 and PYTHIA 5.3. Users can also
0755 obtain more flexibility by using subroutines in JETSET 7.2 and
0756 changing the values of parameters in JETSET 7.2 and PYTHIA 5.3
0757 therein. We refer users to the original literature\cite{pythia,jetset}
0758 for the documentations of JETSET 7.2 and PYTHIA 5.3.
0759 For many users, however, subroutines, parameters and event
0760 information in HIJING 1.0 alone will be enough for studying
0761 most of the event types and the physics therein. To save compiling
0762 time and to meet some specific needs of HIJING 1.0, PYTHIA 5.3 has
0763 been modified and together with JETSET 7.2 is renamed as HIPYSET.
0764 Therefore, one should link the main program with HIJING and HIPYSET.
0765
0766 In this program, implicit integer numbers are assumed for
0767 variables beginning with letters I--M, while the implicit real numbers
0768 are assumed for variables beginning with letters A--H and O--Z.
0769
0770 \subsection{Random numbers}
0771
0772 Random numbers in HIJING is obtained by calling the
0773 VAX VMS system function RAN(NSEED). On SPARCstation, one has to
0774 link the program with {\tt -xl} flag in order to compile the program.
0775 We have not checked the portability of this function on machines
0776 with other operating systems. Whenever one encounters problem with
0777 this (pseudo) random number generator on different machines other
0778 than VAX and SPARCstation, one should replace this function by
0779 another random number generator.
0780
0781 To start a new sequence of random numbers, one should give
0782 a new large odd integer value to variable NSEED in
0783 COMMON/RANSEED/NSEED.
0784
0785
0786 \subsection{Main subroutines}
0787
0788 After supplying the desired parameters, the first subroutine a
0789 user has to call is HIJSET. Then subroutine HIJING can be called to
0790 simulate the specified events.
0791
0792 \begin{description}
0793 \itemsep=-4.0pt
0794 \item{}SUBROUTINE HIJSET (EFRM, FRAME, PROJ, TARG, IAP, IZP, IAT, IZT)
0795 \item{}Purpose: to initialize HIJING for specified event type, collision
0796 frame and energy.
0797 \item{}EFRM: colliding energy (GeV) per nucleon in the frame specified
0798 by FRAME.
0799 \item{}FRAME: character variable to specify the frame of the collision.
0800 \vspace{-12.0pt}
0801 \begin{description}
0802 \itemsep=-4.0pt
0803 \item{}='CMS': nucleon-nucleon center of mass frame,
0804 with projectile momentum in $+z$ direction and
0805 target momentum in $-z$ direction.
0806 \item{}='LAB': laboratory frame of the fixed target with
0807 projectile momentum in $+z$ direction.
0808 \end{description}
0809 \vspace{-4.0pt}
0810 \item{}PROJ, TARG: character variables of projectile and target particles.
0811 \vspace{-12.0pt}
0812 \begin{description}
0813 \itemsep=-4.0pt
0814 \item{}='P': proton.
0815 \item{}='PBAR': anti-proton.
0816 \item{}='N': neutron.
0817 \item{}='NBAR': anti-neutron.
0818 \item{}='PI$+$': $\pi^+$.
0819 \item{}='PI$-$': $\pi^-$.
0820 \item{}='A': nucleus.
0821 \end{description}
0822 \hspace{-4.0pt}
0823 \item{}IAP, IAT: mass number of the projectile and target nucleus. Set
0824 to 1 for hadrons.
0825 \item{}IZP, IZT: charge number of the projectile and target nucleus, for
0826 hadrons it is the charge number of that hadron (=1, 0, $-1$).
0827 \end{description}
0828
0829 \begin{description}
0830 \itemsep=-4.0pt
0831 \item{}SUBROUTINE HIJING (FRAME, BMIN, BMAX)
0832 \item{}Purpose: to generate a complete event as specified by subroutine HIJSET
0833 and the given parameters as will be described below.
0834 This is the main routine which can be called (many times)
0835 only after HIJSET has been called once.
0836 \item{}FRAME: character variable to specify the frame of the collision
0837 as given in the HIJSET call.
0838 \item{}BMIN, BMAX: low and up limits (fm) between which the impact
0839 parameter squared $b^2$ is uniformly distributed
0840 for $pA$ and
0841 $AB$ collisions. For hadron-hadron collisions, both are set
0842 to zero and the events
0843 are automatically averaged over all impact parameters.
0844 \end{description}
0845
0846
0847 \subsection{Common blocks for event information}
0848
0849 There are mainly three common blocks which provide users with
0850 important information of the generated events. Common block HIMAIN1
0851 contains global information of the events and common block HIMAIN2
0852 of the produced particles. The information of produced partons are
0853 stored in common blocks HIJJET1, HIJJET2, HISTRNG.
0854
0855 \begin{description}
0856 \itemsep=-4.0pt
0857 \item{}COMMON/HIMAIN1/NATT, EATT, JATT, NT, NP, N0, N01, N10, N11
0858 \item{}Purpose: to give the overall information of the generated event.
0859 \item{}NATT: total number of produced stable and undecayed particles of
0860 the current event.
0861 \item{}EATT: the total energy of the produced particles in c.m. frame
0862 of the collision to check energy conservation.
0863 \item{}JATT: the total number of hard scatterings in the current event.
0864 \item{}NP, NT: the number of participant projectile and target nucleons
0865 in the current event.
0866 \item{}N0, N01, N10, N11: number of $N$-$N$, $N$-$N_{wounded}$,
0867 $N_{wounded}$-$N$, and
0868 $N_{wounded}$-$N_{wounded}$ collisions in
0869 the current event ($N$, $N_{wounded}$ stand
0870 for nucleon and wounded nucleon respectively).
0871 \end{description}
0872
0873 \begin{description}
0874 \itemsep=-4.0pt
0875 \item{}COMMON /HIMAIN2/KATT(130000,4), PATT(130000,4)
0876 \item{}Purpose: to give information of produced stable and undecayed
0877 particles. Parent particles which decayed are not included
0878 here.
0879 \item{}KATT(I, 1): (I=1,$\cdots$,NATT) flavor codes (see appendix) of
0880 the produced particles.
0881 \item{}KATT(I, 2): (I=1,$\cdots$,NATT) status codes to identify the
0882 sources from which the particles come.
0883 \vspace{-12.0pt}
0884 \begin{description}
0885 \itemsep=-4.0pt
0886 \item{}=0: projectile nucleon (or hadron) which has
0887 not interacted at all.
0888 \item{}=1: projectile nucleon (or hadron) which
0889 only suffers an elastic collision.
0890 \item{}=2: from a diffractive projectile nucleon (or hadron)
0891 in a single diffractive interaction.
0892 \item{}=3: from the fragmentation of a projectile string
0893 system (including gluon jets).
0894 \item{}=10 target nucleon (or hadron) which has not
0895 interacted at all.
0896 \item{}=11: target nucleon (or hadron) which only
0897 suffers an elastic collision.
0898 \item{}=12: from a diffractive target nucleon (or hadron)
0899 in a single diffractive interaction.
0900 \item{}=13: from the fragmentation of a target string
0901 system (including gluon jets).
0902 \item{}=20: from scattered partons which form string
0903 systems themselves.
0904 \item{}=40: from direct production in the hard processes
0905 ( currently, only direct photons are included).
0906 \end{description}
0907 \vspace{-4.0pt}
0908 \item{}KATT(I,3): (I=1,$\cdots$,NATT) line number of the parent particle.
0909 For finally produced or directly produced (not from
0910 the decay of another particle) particles, it is set
0911 to 0 (The option to keep the information of all
0912 particles including the decayed ones is IHPR2(21)=1).
0913 \item{}KATT(I,4): (I=1,$\cdots$,NATT) status number of the particle.
0914 \vspace{-12.0pt}
0915 \begin{description}
0916 \itemsep=-4.0pt
0917 \item{}=1: finally or directly produced particles.
0918 \item{}=11: particles which has already decayed.
0919 \end{description}
0920 \vspace{-4.0pt}
0921 \item{}PATT(I, 1-4): (I=1,$\cdots$,NATT) four-momentum ($p_x,p_y,p_z,E$)
0922 (GeV/$c$, GeV) of the produced particles.
0923 \end{description}
0924
0925 \begin{description}
0926 \itemsep=-4.0pt
0927 \item{}COMMON/HIJJET1/NPJ(300), KFPJ(300,500), PJPX(300,500), PJPY(300,500),\\
0928 PJPZ(300,500), PJPE(300,500), PJPM(300,500), NTJ(300), KFTJ(300,500),\\
0929 PJTX(300,500), PJTY(300,500), PJTZ(300,500), PJTE(300,500), PJTM(300,500)
0930 \item{}Purpose: contains information about produced partons which are
0931 connected with the valence quarks and diquarks of
0932 projectile or target nucleons (or hadron) to form
0933 string systems for fragmentation. The momentum and
0934 energy of all produced partons are calculated in
0935 the c.m. frame of the collision. IAP, IAT are the
0936 numbers of nucleons in projectile and target nucleus
0937 respectively (IAP, IAT=1 for hadron projectile or target).
0938 \item{}NPJ(I): (I=1,$\cdots$,IAP) number of partons associated with projectile
0939 nucleon I.
0940 \item{}KFPJ(I, J): (I=1,$\cdots$,IAP, J=1,$\cdots$,NPJ(I)) parton
0941 flavor code of the
0942 parton J associated with projectile nucleon I.
0943 \item{}PJPX(I, J), PJPY(I, J), PJPZ(I, J), PJPE(I, J), PJPM(I, J): the four
0944 momentum and mass ($p_x,p_y,p_z,E,M$)
0945 (GeV/$c$, GeV, GeV/$c^2$) of parton J associated with
0946 the projectile nucleon I.
0947 \item{}NTJ(I): (I=1,$\cdots$,IAT) number of partons associated with
0948 target nucleon I.
0949 \item{}KFTJ(I, J): (I=1,$\cdots$,IAT, J=1,$\cdots$,NTJ(I)): parton
0950 flavor code of the parton J associated with
0951 target nucleon I.
0952 \item{}PJTX(I, J), PJTY(I, J), PJTZ(I, J), PJTE(I, J), PJTM(I, J): the four
0953 momentum and mass ($p_x,p_y,p_z,E,M$)
0954 (GeV/$c$, GeV, GeV/$c^2$) of parton J associated with
0955 target nucleon I.
0956 \end{description}
0957
0958 \begin{description}
0959 \itemsep=-4.0pt
0960 \item{}COMMON/HIJJET2/NSG, NJSG(900), IASG(900,3), K1SG(900,100),\\
0961 \hspace{-24pt}K2SG(900,100), PXSG(900,100), PYSG(900,100), PZSG(900,100), \\
0962 \hspace{-24pt}PESG(900,100), PMSG(900,100)
0963 \item{}Purpose: contains information about the produced partons which
0964 will form string systems themselves without being
0965 connected to valence quarks and diquarks.
0966 \item{}NSG: the total number of such string systems.
0967 \item{}NJSG(I): (I=1,$\cdots$,NSG) number of partons in the string system I.
0968 \item{}IASG(I, 1), IASG(I, 2): to specify which projectile and target
0969 nucleons produce string system I.
0970 \item{}IASG(I, 3): to indicate whether the jets will be quenched (0)
0971 or will not be quenched (1).
0972 \item{}K1SG(I, J): (J=1,$\cdots$,NJSG(I)) color flow information of parton J
0973 in string system I (see JETSET 7.2 for detailed
0974 explanation).
0975 \item{}K2SG(I, J): (J=1,$\cdots$,NJSG(I)) flavor code of parton J in string
0976 system I.
0977 \item{}PXSG(I, J), PYSG(I, J), PZSG(I, J), PESG(I, J), PMSG(I, J): four
0978 momentum and mass ($p_x,p_y,p_z,E,M$)
0979 ( GeV/$c$, GeV, GeV/$c^2$) of parton J in string system I.
0980 \end{description}
0981
0982
0983 \begin{description}
0984 \itemsep=-4.0pt
0985 \item{}COMMON/HISTRNG/NFP(300,15), PP(300,15), NFT(300,15), PT(300,15)
0986 \item{}Purpose: contains information about the projectile and
0987 target nucleons (hadron) and the corresponding constituent
0988 quarks, diquarks. IAP, IAT are the numbers of nucleons in
0989 projectile and target nucleus respectively (IAP, IAT=1
0990 for hadron projectile or target).
0991 \item{}NFP(I, 1): (I=1,$\cdots$,IAP) flavor code of the valence quark in
0992 projectile nucleon (hadron) I.
0993 \item{}NFP(I, 2): flavor code of diquark in projectile nucleon (anti-quark
0994 in projectile meson) I.
0995 \item{}NFP(I, 3): present flavor code of the projectile nucleon (hadron) I
0996 ( a nucleon or meson can be excited to its vector resonance).
0997 \item{}NFP(I, 4): original flavor code of projectile nucleon (hadron) I.
0998 \item{}NFP(I, 5): collision status of projectile nucleon (hadron) I.
0999 \vspace{-12.0pt}
1000 \begin{description}
1001 \itemsep=-4.0pt
1002 \item{}=0: suffered no collision.
1003 \item{}=1: suffered an elastic collision.
1004 \item{}=2: being the diffractive one in a single-diffractive
1005 collision.
1006 \item{}=3: became an excited string after an inelastic
1007 collision.
1008 \end{description}
1009 \vspace{-4.0pt}
1010 \item{}NFP(I, 6): the total number of hard scatterings associated with
1011 projectile nucleon (hadron) I. If NFP(I,6)$<0$, it can not
1012 produce jets any more due to energy conservation.
1013 \item{}NFP(I, 10): to indicate whether the valence quarks or diquarks
1014 (anti-quarks) in projectile nucleon (hadron) I
1015 suffered a hard scattering,
1016 \vspace{-12.0pt}
1017 \begin{description}
1018 \itemsep=-4.0pt
1019 \item{}=0: has not suffered a hard scattering.
1020 \item{}=1: suffered one or more hard scatterings in
1021 current binary nucleon-nucleon collision.
1022 \item{}=$-1$: suffered one or more hard scatterings in
1023 previous binary nucleon-nucleon collisions.
1024 \end{description}
1025 \vspace{-4.0pt}
1026 \item{}NFP(I, 11): total number of interactions projectile nucleon (hadron)
1027 I has suffered so far.
1028 \item{}PP(I, 1), PP(I, 2), PP(I, 3), PP(I, 4), PP(I, 5): four momentum and
1029 the invariant mass ($p_x,p_y,p_z,E,M$)
1030 (GeV/$c$, GeV, GeV/$c^2$) of projectile nucleon (hadron) I.
1031 \item{}PP(I, 6), PP(I, 7): transverse momentum ($p_x,p_y$) (GeV/$c$) of the
1032 valence quark in projectile nucleon (hadron) I.
1033 \item{}PP(I, 8), PP(I, 9): transverse momentum ($p_x,p_y$) (GeV/$c$) of the
1034 diquark (anti-quark) in projectile nucleon (hadron) I.
1035 \item{}PP(I, 10), PP(I, 11), PP(I, 12): three momentum ($p_x,p_y,p_z$)
1036 (GeV/$c$) transferred to the quark or diquark (anti-quark)
1037 in projectile nucleon (hadron) I from the last hard
1038 scattering.
1039 \item{}PP(I, 14): mass (GeV/$c^2$) of the quark in projectile nucleon
1040 (hadron) I.
1041 \item{}PP(I, 15): mass of the diquark (anti-quark) in projectile
1042 nucleon (hadron) I.
1043 \item{}NFT(I, 1--15), PT(I,1--15): give the same
1044 information for the target nucleons (hadron) and the
1045 corresponding quarks and diquarks (anti-quarks) as for
1046 the projectile nucleons.
1047 \end{description}
1048
1049
1050
1051
1052 \subsection{Options and parameters}
1053
1054
1055 The following common block is for input parameters for HIJING
1056 which are used mainly for specifying event options and changing the
1057 default parameters. It also contains some extra event information.
1058 The default values of the parameters are given by D. Some parameters
1059 are simply used to redefine the parameters in JETSET 7.2 and PYTHIA 5.3.
1060 Users have to find the detailed explanations in JETSET and PYTHIA
1061 documentations.
1062
1063 \begin{description}
1064 \itemsep=-4.0pt
1065 \item{}COMMON/HIPARNT/HIPR1(100), IHPR2(50), HINT1(100), IHNT2(50)
1066 \item{}Purpose: contains input parameters (HIPR1, IHPR2) for event options
1067 and some extra information (HINT1, IHNT2) of current event.
1068 \item{}HIPR1(1): (D=1.5 GeV/$c^2$) minimum value for the invariant mass of
1069 the excited string system in a hadron-hadron interaction.
1070 \item{}HIPR1(2): (D=0.35 GeV) width of the Gaussian $P_T$ distribution of
1071 produced hadron in Lund string fragmentation
1072 (PARJ(21) in JETSET 7.2).
1073 \item{}HIPR1(3), HIPR1(4): (D=0.5, 0.9 GeV$^{-2}$) give the $a$ and $b$
1074 parameters of the symmetric Lund fragmentation function
1075 (PARJ(41), PARJ(42) in JETSET 7.2).
1076 \item{}HIPR1(5): (D=2.0 GeV/$c^2$) invariant mass cut-off for the dipole
1077 radiation of a string system below which soft gluon
1078 radiations are terminated.
1079 \item{}HIPR1(6): (D=0.1) the depth of shadowing of structure functions
1080 at $x=0$ as defined in Eq.~\ref{eq:shadow1}:
1081 $\alpha_A=\mbox{HIPR1(6)}\times(A^{1/3}-1)$.
1082 \item{}HIPR1(7): not used
1083 \item{}HIPR1(8): (D=2.0 GeV/$c$) minimum $P_T$ transfer in hard or
1084 semihard scatterings.
1085 \item{}HIPR1(9): (D=$-1.0$ GeV/$c$) maximum $P_T$ transfer in hard or
1086 semihard scatterings. If negative, the limit is set
1087 by the colliding energy.
1088 \item{}HIPR1(10): (D=$-2.25$ GeV/$c$) specifies the value of $P_T$ for
1089 each triggered hard scattering generated per event
1090 (see Section \ref{sec:jet2}). If HIPR1(10) is negative,
1091 its absolute value gives the low limit of the
1092 $P_T$ of the triggered jets.
1093 \item{}HIPR1(11): (D=2.0 GeV/$c$) minimum $P_T$ of a jet which will interact
1094 with excited nuclear matter. When the $P_T$ of a jet
1095 is smaller than HIPR1(11) it will stop interacting further.
1096 \item{}HIPR1(12): (D=1.0 fm) transverse distance between a traversing jet
1097 and an excited nucleon (string system) below which they
1098 will interact and the jet will lose energy and momentum
1099 to that string system.
1100 \item{}HIPR1(13): (D=1.0 fm) the mean free path of a jet when it goes
1101 through the excited nuclear matter.
1102 \item{}HIPR1(14): (D=2.0 GeV/fm) the energy loss $dE/dz$ of a gluon
1103 jet inside the excited nuclear matter. The energy loss
1104 for a quark jet is half of the energy loss of a gluon.
1105 \item{}HIPR1(15): (D=0.2 GeV/$c$) the scale $\Lambda$ in the
1106 calculation of $\alpha_s$.
1107 \item{}HIPR1(16): (D=2.0 GeV/$c$) the initial scale $Q_0$ for the
1108 evolution of the structure functions.
1109 \item{}HIPR1(17): (D=2.0) $K$ factor for the differential jet cross
1110 sections in the lowest order pQCD calculation.
1111 \item{}HIPR1(18): not used
1112 \item{}HIPR1(19), HIPR1(20): (D=0.1, 1.4 GeV/$c$) parameters in the
1113 distribution for the $P_T$ kick from soft interactions
1114 (see Eq.~\ref{eq:kick}),
1115 $1/[(\mbox{HIPR1(19)}^2+P_T^2)(\mbox{HIPR1(20)}^2+P_T^2)]$.
1116 \item{}HIPR1(21): (D=1.6 GeV/$c$) the maximum $P_T$ for soft interactions,
1117 beyond which a Gaussian distribution as specified by
1118 HIPR1(2) will be used.
1119 \item{}HIPR1(22): (D=2.0 GeV/$c$) the scale in the form factor to suppress
1120 the $P_T$ transfer to diquarks in hard scatterings,
1121 \item{}HIPR1(23)--HIPR1(28): not used.
1122 \item{}HIPR1(29): (D=0.4 fm) the minimum distance between two nucleons
1123 inside a nucleus when the coordinates of the nucleons
1124 inside a nucleus are initialized.
1125 \item{}HIPR1(30): (D=2$\times$HIPR1(31)=57.0 mb) the inclusive cross
1126 section $\sigma_{soft}$ for soft interactions. The default
1127 value $\sigma_{soft}=2\sigma_0$ is used to ensure the
1128 geometrical scaling of $pp$ interaction cross sections
1129 at low energies.
1130 \item{}HIPR1(31): (D=28.5 mb) the cross section $\sigma_0$ which
1131 characterizes the geometrical size of a nucleon
1132 ($\pi b_0^2=\sigma_0$, see Eq.~\ref{eq:over2}).
1133 The default value is only for high-energy
1134 limit ($\sqrt{s}>200$ GeV). At lower energies, a slight
1135 decrease which depends on energy is parametrized in the
1136 program. The default values of the two parameters
1137 HIPR1(30), HIPR1(31) are only for $NN$ type interactions.
1138 For other kinds of projectile or target hadrons, users
1139 should change these values so that correct inelastic
1140 and total cross sections (HINT1(12), HINT1(13)) are
1141 obtained by the program.
1142 \item{}HIPR1(32): (D=3.90) parameter $\mu_0$ in Eq.~\ref{eq:over2} for
1143 the scaled eikonal function.
1144 \item{}HIPR1(33): fractional cross section of single-diffractive
1145 interaction as parametrized in Ref.~\cite{goulianos}.
1146 \item{}HIPR1(34): maximum radial coordinate for projectile nucleons
1147 to be given by the initialization program HIJSET.
1148 \item{}HIPR1(35): maximum radial coordinate for target nucleons
1149 to be given by the initialization program HIJSET.
1150 \item{}HIPR1(36)-HIPR1(39): not used.
1151 \item{}HIPR1(40): (D=3.141592654) value of $\pi$.
1152 \item{}HIPR1(41)--HIPR1(42): not used.
1153 \item{}HIPR1(43): (D=0.01) fractional energy error relative to the
1154 colliding energy permitted per nucleon-nucleon collision.
1155 \item{}HIPR1(44), HIPR1(45), HIPR1(46): (D=1.5, 0.1 GeV, 0.25) parameters
1156 $\alpha$, $c$ and $\beta$ in the valence quark
1157 distributions for soft string excitation,
1158 $(1-x)^{\alpha}/(x^2+c^2/s)^{\beta}$ for baryons,
1159 $1/{(x^2+c^2/s)[(1-x)^2+c^2/s)]}^{\beta}$ for mesons.
1160 \item{}HIPR1(47), HIPR1(48): (D=0.0, 0.5) parameters $\alpha$ and $\beta$
1161 in valence quark distribution,
1162 $(1-x)^{\alpha}/(x^2+c^2/s)^{\beta}$, for the
1163 disassociated excitation in a single diffractive collision.
1164 \item{}HIPR1(49)--HIPR1(100): not used.
1165 \item{}IHPR2(1): (D=1) switch for dipole-approximated QCD radiation
1166 of the string system in soft interactions.
1167 \item{}IHPR2(2): (D=3) option for initial and final state radiation in
1168 the hard scattering.
1169 \vspace{-12.0pt}
1170 \begin{description}
1171 \itemsep=-4.0pt
1172 \item{}=0: both initial and final radiation are off.
1173 \item{}=1: initial radiation on and final radiation off.
1174 \item{}=2: initial radiation off and final radiation on.
1175 \item{}=3: both initial and final radiation are on.
1176 \end{description}
1177 \vspace{-4.0pt}
1178 \item{}IHPR2(3): (D=0) switch for triggered hard scattering with specified
1179 $P_T\geq$HIPR1(10).
1180 \vspace{-12.0pt}
1181 \begin{description}
1182 \itemsep=-4.0pt
1183 \item{}=0: no triggered jet production.
1184 \item{}=1: ordinary hard processes.
1185 \item{}=2: only direct photon production.
1186 \end{description}
1187 \vspace{-4.0pt}
1188 \item{}IHPR2(4): (D=1) switch for jet quenching in the excited
1189 nuclear matter.
1190 \item{}IHPR2(5): (D=1) switch for the $P_T$ kick due to soft interactions.
1191 \item{}IHPR2(6): (D=1) switch for the nuclear effect on the parton
1192 distribution function such as shadowing.
1193 \item{}IHPR2(7): (D=1) selection of Duke-Owens set (1 or 2) of parametrization
1194 of nucleon structure functions.
1195 \item{}IHPR2(8): (D=10) maximum number of hard scatterings per
1196 nucleon-nucleon interaction. When IHPR2(8)=0, jet
1197 production will be turned off. When IHPR2(8)$<0$, the
1198 number of jet production will be fixed at its absolute
1199 value for each NN collision.
1200 \item{}IHPR2(9): (D=0) switch to guarantee at least one pair of minijets
1201 production per event ($pp$, $pA$ or $AB$).
1202 \item{}IHPR2(10): (D=0) option to print warning messages about errors that
1203 might happen. When a fatal error happens the current event
1204 will be abandoned and a new one is generated.
1205 \item{}IHPR2(11): (D=1) choice of baryon production model.
1206 \vspace{-12.0pt}
1207 \begin{description}
1208 \itemsep=-4.0pt
1209 \item{}=0: no baryon-antibaryon pair production, initial
1210 diquark treated as a unit.
1211 \item{}=1: diquark-antidiquark pair production allowed,
1212 initial diquark treated as a unit.
1213 \item{}=2: diquark-antidiquark pair production allowed,
1214 with the possibility for diquark to split
1215 according to the ``popcorn'' scheme (see the
1216 documentation of JETSET 7.2).
1217 \end{description}
1218 \vspace{-4.0pt}
1219 \item{}IHPR2(12): (D=1) option to turn off the automatic decay of the
1220 following particles:
1221 $\pi^0$, $K^0_S$, $D^{\pm}$, $\Lambda$, $\Sigma^{\pm}$.
1222 \item{}IHPR2(13): (D=1) option to turn on single diffractive reactions.
1223 \item{}IHPR2(14): (D=1) option to turn on elastic scattering.
1224 \item{}IHPR2(15)--IHPR2(18): not used.
1225 \item{}IHPR2(19): (D=1) option to turn on initial state soft interaction.
1226 \item{}IHPR2(20): (D=1) switch for the final fragmentation.
1227 \item{}IHPR2(21): (D=0) option to keep the information of all particles
1228 including those which have decayed and the decay history
1229 in the common block HIMAIN2. The line number of the parent
1230 particle is KATT(I,3). The status of a partcile,
1231 whether it is a finally produced particle (KATT(I,4)=1)
1232 or a decayed particle (KATT(I,4)=11) is also kept.
1233 \item{}IHPR2(22)-IHPR2(50): not used.
1234 \item{}HINT1(1): (GeV) colliding energy in the c.m. frame of nucleon-nucleon
1235 collisions.
1236 \item{}HINT1(2): Lorentz transformation variable $\beta$ from laboratory
1237 to c.m. frame of nucleon nucleon collisions.
1238 \item{}HINT1(3): rapidity $y_{cm}$ of the c.m. frame
1239 $\beta=\tanh y_{cm}$.
1240 \item{}HINT1(4): rapidity of projectile nucleons (hadron) $y_{proj}$.
1241 \item{}HINT1(5): rapidity of target nucleons (hadron) $y_{targ}$.
1242 \item{}HINT1(6): (GeV) energy of the projectile nucleons (hadron) in the
1243 given frame.
1244 \item{}HINT1(7): (GeV) energy of the target nucleons (hadron) in the
1245 given frame.
1246 \item{}HINT1(8): (GeV) the rest mass of projectile particles.
1247 \item{}HINT1(9): (GeV) the rest mass of target particles.
1248 \item{}HINT1(10): (mb) the averaged cross section for jet production
1249 per nucleon-nucleon collisions,
1250 $\int d^2b\{1-\exp[-\sigma_{jet}T_N(b)]\}$.
1251 \item{}HINT1(11): (mb) the averaged inclusive cross section $\sigma_{jet}$
1252 for jet production per nucleon-nucleon collisions.
1253 \item{}HINT1(12): (mb) the averaged inelastic cross section of
1254 nucleon-nucleon collisions.
1255 \item{}HINT1(13): (mb) the averaged total cross section of nucleon-nucleon
1256 collisions.
1257 \item{}HINT1(14): (mb) the jet production cross section without nuclear
1258 shadowing effect $\sigma_{jet}^0$ (see Eq.~\ref{eq:sjetab}).
1259 \item{}HINT1(15): (mb) the cross section $\sigma_{jet}^A$ to account for
1260 the projectile shadowing correction term in the jet cross
1261 section (see Eq.~\ref{eq:sjetab}).
1262 \item{}HINT1(16): (mb) the cross section $\sigma_{jet}^B$ to account for
1263 the target shadowing correction term in the jet cross
1264 section (see Eq.~\ref{eq:sjetab}).
1265 \item{}HINT1(17): (mb) the cross section $\sigma_{jet}^{AB}$ to account
1266 for the cross term of shadowing correction in the jet
1267 cross section (see Eq.~\ref{eq:sjetab}).
1268 \item{}HINT1(18): (mb) the effective cross section
1269 $\sigma_{jet}^{eff}(r_A,r_B)$ for jet production
1270 of the latest nucleon-nucleon collision which depends
1271 on the transverse coordinates of the colliding
1272 nucleons (see Eq.~\ref{eq:sjetab}).
1273 \item{}HINT1(19): (fm) the (absolute value of) impact parameter of the
1274 latest event.
1275 \item{}HINT1(20): (radians) the azimuthal angle $\phi$ of the impact
1276 parameter vector in the transverse plane of the latest
1277 event.
1278 \item{}HINT1(21)--HINT1(25): the four momentum and mass ($p_x,p_y,p_z,E,M$)
1279 (GeV/$c$, GeV, GeV/$c^2$) of the first scattered parton
1280 in the triggered hard scattering. This is before the final
1281 state radiation but after the initial state radiation.
1282 \item{}HINT1(26)--HINT1(30): not used.
1283 \item{}HINT1(31)--HINT1(35): the four momentum and mass ($p_x,p_y,p_z,E,M$)
1284 (GeV/$c$, GeV, GeV/$c^2$) of the second scattered parton
1285 in the triggered hard scattering. This is before the final
1286 state radiation but after the initial state radiation.
1287 \item{}HINT1(46)--HINT1(40): not used.
1288 \item{}HINT1(41)--HINT1(45): the four momentum and mass ($p_x,p_y,p_z,E,M$)
1289 (GeV/$c$, GeV, GeV/$c^2$) of the first scattered parton
1290 in the latest hard scattering of the latest event.
1291 \item{}HINT1(46): $P_T$ (GeV/$c$) of the first scattered parton in the
1292 latest hard scattering of the latest event.
1293 \item{}HINT1(47)--HINT1(50): not used.
1294 \item{}HINT1(51)--HINT1(55): the four momentum and mass ($p_x,p_y,p_z,E,M$)
1295 (GeV/$c$, GeV, GeV/$c^2$) of the second scattered parton
1296 in the latest hard scattering of the latest event.
1297 \item{}HINT1(56): $P_T$ (GeV/$c$) of the second scattered parton in the
1298 latest hard scattering of the latest event.
1299 \item{}HINT1(57)--HINT1(58): not used.
1300 \item{}HINT1(59): (mb) the averaged cross section of the
1301 triggered jet production (with $P_T$ specified by HIPR1(10)
1302 and with switch by IHPR2(3)) per nucleon-nucleon
1303 collision,
1304 $\int d^2b\{1-\exp[-\sigma_{jet}^{trig}T_N(b)]\}$
1305 \item{}HINT1(60): (mb) the averaged inclusive cross section of the
1306 triggered jet production $\sigma_{jet}^{trig}$
1307 (with $P_T$ specified by
1308 HIPR1(10) and with switch by IHPR2(3)) per
1309 nucleon-nucleon collision.
1310 \item{}HINT1(61): (mb) the triggered jet production cross section without
1311 nuclear shadowing effect (similar to HINT1(14)).
1312 \item{}HINT1(62): (mb) the cross section to account for the projectile
1313 shadowing correction term in the triggered jet cross
1314 section (similar to HINT1(15)).
1315 \item{}HINT1(63): (mb) the cross section to account for the target
1316 shadowing correction term in the triggered jet cross
1317 section (similar to HINT1(16)).
1318 \item{}HINT1(64): (mb) the cross section to account for the cross
1319 term of shadowing correction in the triggered jet
1320 cross section (similar to HINT1(17).
1321 \item{}HINT1(65): (mb) the inclusive cross section for latest triggered
1322 jet production which depends on the transverse coordinates
1323 of the colliding nucleons (similar to HINT1(18)).
1324 \item{}HINT1(67)--HINT1(71): not used.
1325 \item{}HINT1(72)--HINT1(75): three parameters for the Wood-Saxon
1326 projectile nuclear distribution and the normalization
1327 read from a table inside the program,
1328 $\rho(r)=C[1+W(r/R_A)^2]/\{1+\exp[(r-R_A)/D]\}$,
1329 $R_A$=HINT1(72), $D$=HINT1(73), $W$=HINT1(74), $C$=HINT1(75).
1330 \item{}HINT1(76)--HINT1(79): three parameters for the Wood-Saxon
1331 projectile nuclear distribution and the normalization
1332 read from a table inside the program,
1333 $\rho(r)=C[1+W(r/R_A)^2]/\{1+\exp[(r-R_A)/D]\}$,
1334 $R_A$=HINT1(76), $D$=HINT1(77), $W$=HINT1(78), $C$=HINT1(79).
1335 \item{}HINT1(80)--HINT1(100): the probability of $j=0-20$ number of hard
1336 scatterings per nucleon-nucleon collisions.
1337 \item{}IHNT2(1): the mass number of the projectile nucleus (1 for a hadron).
1338 \item{}IHNT2(2): the charge number of the projectile nucleus. If the
1339 projectile is a hadron, it gives the charge of the hadron.
1340 \item{}IHNT2(3): the mass number of the target nucleus (1 for a hadron).
1341 \item{}IHNT2(4): the charge number of the target nucleus. If the target
1342 is a hadron, it gives the charge of the hadron.
1343 \item{}IHNT2(5): the flavor code of the projectile hadron (0 for nucleus).
1344 \item{}IHNT2(6): the flavor code of the target hadron (0 for nucleus).
1345 \item{}IHNT2(7)--IHNT2(8): not used.
1346 \item{}IHNT2(9): the flavor code of the first scattered parton in the
1347 triggered hard scattering.
1348 \item{}IHNT2(10): the flavor code of the second scattered parton in the
1349 triggered hard scattering.
1350 \item{}IHNT2(11): the sequence number of the projectile nucleon in the
1351 latest nucleon-nucleon interaction of the latest event.
1352 \item{}IHNT2(12): the sequence number of the target nucleon in the latest
1353 nucleon-nucleon interaction of the latest event.
1354 \item{}IHNT2(13): status of the latest soft string excitation.
1355 \vspace{-12.0pt}
1356 \begin{description}
1357 \itemsep=-4.0pt
1358 \item{}=1: double diffractive.
1359 \item{}=2: single diffractive.
1360 \item{}=3: non-single diffractive.
1361 \end{description}
1362 \vspace{-4.0pt}
1363 \item{}IHNT2(14): the flavor code of the first scattered parton in the
1364 latest hard scattering of the latest event.
1365 \item{}IHNT2(15): the flavor code of the second scattered parton in the
1366 latest hard scattering of the latest event.
1367 \item{}IHNT2(16)--IHNT2(50): not used.
1368
1369 \end{description}
1370
1371
1372 \subsection{Other physics routines}
1373
1374 Inside HIJING main routines, calls have to be made to many other
1375 routines to carry out the specified simulations. We give here a brief
1376 description of some of those routines.
1377
1378 \begin{description}
1379 \itemsep=-4.0pt
1380 \item{}SUBROUTINE HIJINI
1381 \item{}Purpose: to reset all relevant common blocks and variables and
1382 initialize the program for each event.
1383 \end{description}
1384
1385 \begin{description}
1386 \itemsep=-4.0pt
1387 \item{}SUBROUTINE HIJCRS
1388 \item{}Purpose: to calculate cross sections of minijet production,
1389 cross section of the triggered processes,
1390 elastic, inelastic and total cross section of nucleon-nucleon
1391 (or hadron) collisions within the eikonal formalism.
1392 \end{description}
1393
1394 \begin{description}
1395 \itemsep=-4.0pt
1396 \item{}SUBROUTINE JETINI (I\_TYPE)
1397 \item{}Purpose: to initialize the program for generating hard scatterings
1398 as specified by the parameters and options.
1399 \end{description}
1400
1401 \begin{description}
1402 \itemsep=-4.0pt
1403 \item{}SUBROUTINE HIJHRD (JP, JT, JOUT, JFLG, IOPJET0)
1404 \item{}Purpose: to simulate one hard scattering among the multiple jet
1405 production per nucleon-nucleon (hadron) collision and the
1406 associated radiations by calling PYTHIA subroutines.
1407 \end{description}
1408
1409 \begin{description}
1410 \itemsep=-4.0pt
1411 \item{}SUBROUTINE HARDJET (JP, JT, JFLG)
1412 \item{}Purpose: to simulate the triggered hard processes.
1413 \end{description}
1414
1415 \begin{description}
1416 \itemsep=-4.0pt
1417 \item{}SUBROUTINE HIJSFT (JP, JT, JOUT, IERROR)
1418 \item{}Purpose: to generate the soft interaction for each binary
1419 nucleon-nucleon collision.
1420 \end{description}
1421
1422 \begin{description}
1423 \itemsep=-4.0pt
1424 \item{}SUBROUTINE HIJSRT (JPJT, NPT)
1425 \item{}Purpose: to rearrange the gluon jets in a string system according
1426 to their rapidities.
1427 \end{description}
1428
1429 \begin{description}
1430 \itemsep=-4.0pt
1431 \item{}SUBROUTINE QUENCH (JPJT, NTP)
1432 \item{}Purpose: to perform jet quenching by allowing final state
1433 interaction of produced jet inside the excited strings.
1434 The energy lost by the jets will be transferred to other
1435 string systems.
1436 \end{description}
1437
1438 \begin{description}
1439 \itemsep=-4.0pt
1440 \item{}SUBROUTINE HIJFRG (JTP, NTP, IERROR)
1441 \item{}Purpose: to arrange the produced partons together with the
1442 valence quarks and diquarks (anti-quarks) and LUEXEC subroutine in
1443 JETSET is called to perform the fragmentation for each string
1444 system.
1445 \end{description}
1446
1447 \begin{description}
1448 \itemsep=-4.0pt
1449 \item{}SUBROUTINE ATTRAD (IERROR)
1450 \item{}Purpose: to perform soft radiations according to Lund dipole
1451 approximation.
1452 \end{description}
1453
1454 \begin{description}
1455 \itemsep=-4.0pt
1456 \item{}SUBROUTINE ATTFLV (ID, IDQ, IDQQ)
1457 \item{}Purpose: to generate the flavor codes of the valence quark and
1458 diquark (anti-quark) inside a given nucleon (hadron).
1459 \end{description}
1460
1461 \begin{description}
1462 \itemsep=-4.0pt
1463 \item{}SUBROUTINE HIJCSC (JP, JT)
1464 \item{}Purpose: to perform elastic scatterings and possible elastic
1465 nucleon-nucleon cascading.
1466 \end{description}
1467
1468 \begin{description}
1469 \itemsep=-4.0pt
1470 \item{}SUBROUTINE HIJWDS (IA, IDH, XHIGH)
1471 \item{}Purpose: to set up a distribution function according to the
1472 three-parameter Wood-Saxon distribution to generate the
1473 coordinates of the nucleons inside the projectile or
1474 target nucleus.
1475 \end{description}
1476
1477 \begin{description}
1478 \itemsep=-4.0pt
1479 \item{}FUNCTION PROFILE (XB)
1480 \item{}Purpose: gives the overlap profile function of two colliding
1481 nuclei at given impact parameter XB. This can be used to
1482 weight the simulated events of uniformly distributed impact
1483 parameter and obtain the results of the minimum biased events.
1484 \end{description}
1485
1486 \begin{description}
1487 \itemsep=-4.0pt
1488 \item{}SUBROUTINE HIBOOST
1489 \item{}Purpose: to transform the produced particles from c.m. frame
1490 to the laboratory frame.
1491 \end{description}
1492
1493 \begin{description}
1494 \itemsep=-4.0pt
1495 \item{}BLOCK DATA HIDATA
1496 \item{}Purpose: to give the default values of the parameters and
1497 options and initialize the event record common blocks.
1498 \end{description}
1499
1500 \subsection{Other common blocks}
1501
1502 There also other two common blocks which contain information
1503 users may find useful.
1504
1505 \begin{description}
1506 \itemsep=-4.0pt
1507 \item{}COMMON/HIJJET4/NDR,IADR(900,2),KFDR(900),PDR(900,5)
1508 \item{}Purpose: contains information about directly produced particles
1509 (currently only direct photons).
1510 \item{}NDR: total number of directly produced particles.
1511 \item{}IADR(I, 1), IADR(I, 2): the sequence numbers of projectile and
1512 target nucleons which produce particle I during their
1513 interaction.
1514 \item{}KFDR(I): the flavor code of directly produced particle I.
1515 \item{}PDR(I, 1,$\cdots$,5): four momentum and mass ($p_x,p_y,p_z,E,M$)
1516 (GeV/c, GeV, GeV/$c^2$) of particle I.
1517 \end{description}
1518
1519 \begin{description}
1520 \itemsep=-4.0pt
1521 \item{}COMMON/HIJCRDN/YP(3,300),YT(3,300)
1522 \item{}Purpose: to specify the space coordinates of projectile and
1523 target nucleons inside their parent nuclei.
1524 \item{}YP(1,$\cdots$,3, I): $x,y,z$ (fm) coordinates of the number
1525 I projectile nucleon relative to the center of its
1526 parent nucleus.
1527 \item{}YT(1,$\cdots$,3, I): $x,y,z$ (fm) coordinates of the number I target
1528 nucleon relative to the center of its parent nucleus.
1529 \end{description}
1530
1531 \section{Instruction on How to Use the Program}
1532
1533 HIJING program was designed for high energy $pp$, $pA$ and $AB$
1534 collisions. It is relatively easy to use with only two main
1535 subroutines and a few adjustable parameters. In this section we will
1536 give three example programs for generating events of fixed impact
1537 parameter, minimum bias, and triggered hard processes. In all the
1538 cases, users should write their own main program with all the relevant
1539 common blocks included. To study the event, users may have to call
1540 some routines in JETSET. Therefore, knowledge of JETSET will be helpful.
1541 Two special routines of JETSET which users may frequently use are
1542 function LUCHGE(KF) to give three times the charge, and function
1543 ULMASS(KF) to give the mass for a particle/parton with flavor code
1544 KF.
1545
1546 \subsection{Fixed impact parameter}
1547
1548 For relativistic hadron-nucleus and heavy ion
1549 collisions, events at fixed impact
1550 parameter especially central collisions with $b=0$ are most commonly
1551 studied. It is also the simplest simulation for HIJING. For $pp$
1552 collisions, one should always use zero impact parameter and HIJING
1553 will give the results averaged over the impact parameter. In the
1554 following example program, we generate 1000 central events of
1555 $Au+Au$ at $\sqrt{s}=200$ GeV/n and calculate the rapidity and
1556 transverse momentum distributions of produced charged particles.
1557 The projectile and target nucleons in the beam directions which
1558 have not suffered any interaction are not considered produced
1559 particles. The output of the event-averaged rapidity and transverse
1560 momentum distributions are plotted in Figs.1 and 2.
1561
1562 {\tt
1563 \begin{tabbing}
1564 AAAAA\=AAA\= \kill
1565 \> \>CHARACTER FRAME*8, PROJ*8, TARG*8 \\
1566 \>\> DIMENSION DNDPT(50),DNDY(50)\\
1567 \>\> COMMON/HIPARNT/HIPR1(100), IHPR2(50), HINT1(100), IHNT2(50) \\
1568 C....information of produced particles: \> \>\\
1569 \> \>COMMON/HIMAIN1/NATT, EATT, JATT, NT, NP, N0, N01, N10, N11 \\
1570 \> \>COMMON/HIMAIN2/KATT(130000,4), PATT(130000,4) \\
1571 C....information of produced partons: \> \> \\
1572 \> \>COMMON/HIJJET1/NPJ(300), KFPJ(300,500), PJPX(300,500), \\
1573 \>\& \> PJPY(300,500), PJPZ(300,500), PJPE(300,500), PJPM(300,500),\\
1574 \>\& \> NTJ(300), KFTJ(300,500), PJTX(300,500), PJTY(300,500),\\
1575 \>\& \> PJTZ(300,500), PJTE(300,500), PJTM(300,500)\\
1576 \> \> COMMON/HIJJET2/NSG, NJSG(900), IASG(900,3), K1SG(900,100),\\
1577 \>\&\>K2SG(900,100), PXSG(900,100), PYSG(900,100), PZSG(900,100), \\
1578 \>\&\>PESG(900,100), PMSG(900,100) \\
1579 \> \> COMMON/HISTRNG/NFP(300,15), PP(300,15), NFT(300,15), PT(300,15) \\
1580 C....initialize HIJING for Au+Au collisions at c.m. energy of 200 GeV: \> \>\\
1581 \>\> EFRM=200.0 \\
1582 \>\> FRAME='CMS' \\
1583 \>\> PROJ='A' \\
1584 \>\> TARG='A' \\
1585 \>\> IAP=197 \\
1586 \>\> IZP=79 \\
1587 \>\> IAT=197 \\
1588 \>\> IZT=79 \\
1589 \>\> CALL HIJSET (EFRM, FRAME, PROJ, TARG, IAP, IZP, IAT, IZT) \\
1590 C....generating 1000 central events:\>\> \\
1591 \>\> N\_EVENT=1000 \\
1592 \>\> BMIN=0.0 \\
1593 \>\> BMAX=0.0 \\
1594 \>\> DO 2000 J=1,N\_EVENT\\
1595 \>\> \hspace{24pt}CALL HIJING (FRAME, BMIN, BMAX) \\
1596 C....calculate rapidity and transverse momentum distributions of \> \> \\
1597 C....produced charged particles: \>\> \\
1598 \>\> \hspace{24pt}DO 1000 I=1,NATT \\
1599 C........\>\>exclude beam nucleons as produced particles: \\
1600 \>\> \hspace{48pt}IF(KATT(I,2).EQ.0 .OR. KATT(I,2).EQ.10) GO TO 1000 \\
1601 C........\>\>select charged particles only: \\
1602 \>\> \hspace{48pt}IF (LUCHGE(KATT(I,1)) .EQ. 0) GO TO 1000 \\
1603 \>\> \hspace{48pt}PTR=SQRT(PATT(I,1)**2+PATT(I,2)**2)\\
1604 \>\> \hspace{48pt}IF (PTR .GT. 10.0) GO TO 100\\
1605 \>\> \hspace{48pt}IPT=PTR/0.2\\
1606 \>\> \hspace{48pt}DNDPT(IPT)=DNDPT(IPT)+1.0/FLOAT(N\_EVENT)/0.2/2.0/PTR\\
1607 100\>\> \hspace{48pt}Y=0.5*LOG((PATT(I,4)+PATT(I,3))/(PATT(I,4)+PATT(I,3)))\\
1608 \>\> \hspace{48pt}IF(ABS(Y) .GT. 10.0) GO GO 1000\\
1609 \>\> \hspace{48pt}IY=ABS(Y)/0.2\\
1610 \>\> \hspace{48pt}DNDY(IY)=DNDY(IY)+1.0/FLOAT(N\_EVENT)/0.2/2.0\\
1611 1000\>\>\hspace{24pt}CONTINUE \\
1612 2000\>\>CONTINUE \\
1613 C....print out the rapidity and transverse momentum distributions:\>\>\\
1614 \>\> WRITE(*,*) (0.2*(K-1),DNDPT(K),DNDY(K),K=1,50)\\
1615 \>\> STOP \\
1616 \>\> END
1617 \end{tabbing}
1618 }
1619
1620
1621 \subsection{Minimum bias events}
1622
1623 Because of the diffused distribution of large nuclei, minimum
1624 bias events are dominated by those of large impact parameters with a
1625 long shoulder for small impact parameter events.
1626 To effectively study minimum
1627 bias events, one can generate events uniformly between zero and
1628 the largest impact parameter $R_A+R_B$, and then weight the events by
1629 a Glauber probability,
1630 \begin{equation}
1631 \frac{1}{\sigma_{AB}}d^2b\{1-\exp[-\sigma_{in}T_{AB}(b)]\}
1632 \end{equation}
1633 where $\sigma_{in}$ is the inelastic cross section for $N$-$N$ collisions and
1634 $\sigma_{AB}$ is the total reaction cross section for $AB$ collisions
1635 integrated over all impact parameters. To obtain the Glauber distribution
1636 a routine named FUNCTION PROFILE(XB) has to be called.
1637
1638 In the following main program, a range of impact parameters
1639 from 0 to $2R_A$ is divided into 100 intervals. For each fixed
1640 impact parameter, 10 events are generated for $Au+Au$ at $\sqrt{s}=200$ GeV/n.
1641 Then $P_T$ distribution for charged pions is calculated for
1642 the minimum bias events.
1643
1644 {\tt
1645 \begin{tabbing}
1646 AAAAA\=AAA\= \kill
1647 \> \>CHARACTER FRAME*8, PROJ*8, TARG*8 \\
1648 \> \>COMMON/HIPARNT/HIPR1(100), IHPR2(50), HINT1(100), IHNT2(50) \\
1649 \> \>COMMON/HIMAIN1/NATT, EATT, JATT, NT, NP, N0, N01, N10, N11 \\
1650 \> \>COMMON/HIMAIN2/KATT(130000,4), PATT(130000,4) \\
1651 \> \>DIMENSION GB(101), XB(101), DNDP(50) \\
1652 C....initialize HIJING for Au+Au collisions at c.m. energy of 200 GeV: \> \>\\
1653 \>\> EFRM=200.0 \\
1654 \>\> FRAME='CMS' \\
1655 \>\> PROJ='A' \\
1656 \>\> TARG='A' \\
1657 \>\> IAP=197 \\
1658 \>\> IZP=79 \\
1659 \>\> IAT=197 \\
1660 \>\> IZT=79 \\
1661 \>\> CALL HIJSET (EFRM, FRAME, PROJ, TARG, IAP, IZP, IAT, IZT) \\
1662 C....set BMIN=0 and BMAX=R\_A+R\_B \>\> \\
1663 \>\> BMIN=0.0 \\
1664 \>\> BMAX=HIPR1(34)+HIPR1(35) \\
1665 C....calculate the Glauber probability and its integrated value:\>\> \\
1666 \>\> DIP=(BMAX-BMIN)/100.0 \\
1667 \>\> GBTOT=0.0 \\
1668 \>\> DO 100 I=1,101 \\
1669 \>\> \hspace{24pt}XB(I)=BMIN+(I-1)*DIP \\
1670 \>\> \hspace{24pt}OV=PROFILE(XB(I)) \\
1671 \>\> \hspace{24pt}GB(I)=XB(I)*(1.0-EXP(-HINT(12)*OV)) \\
1672 \>\> \hspace{24pt}GBTOT=GBTOT+GB(I) \\
1673 100\>\> CONTINUE \\
1674 C....generating 10 events for each of 100 impact parameter intervals:\>\> \\
1675 \>\> NONT=0 \\
1676 \>\> GNORM=GBTOT \\
1677 \>\> N\_EVENT=10 \\
1678 \>\> DO 300 IB=1,100 \\
1679 \>\> \hspace{24pt}B1=XB(IB) \\
1680 \>\> \hspace{24pt}B2=XB(IB+1)\\
1681 C.......\>\>normalized Glauber probability:\\
1682 \>\> \hspace{24pt}W\_GB=(GB(IB)+GB(IB+1))/2.0/GBTOT\\
1683 \>\> \hspace{24pt}DO 200 IE=1,N\_EVENT\\
1684 \>\> \hspace{48pt}CALL HIJING(FRAME,B1,B2) \\
1685 C........\>\>count number of events without any interaction\\
1686 C........\>\>and renormalize the total Glauber probability:\\
1687 \>\> \hspace{48pt}IF (NATT .EQ. 0) THEN \\
1688 \>\> \hspace{62pt}NONT=NONT+1 \\
1689 \>\> \hspace{62pt}GNORM=GNORM-GB(IB)/FLOAT(N\_EVENT) \\
1690 \>\> \hspace{62pt}GO TO 200\\
1691 \>\> \hspace{48pt}ENDIF \\
1692 C....calculate pt distribution of charged pions: \>\> \\
1693 \>\> \hspace{48pt}DO 150 K=1,NATT \\
1694 C........\>\>select charged pions only: \\
1695 \>\> \hspace{62pt}IF (ABS(KATT(K,1)) .NE. 211) GO TO 150 \\
1696 C........\>\>calculate pt: \\
1697 \>\> \hspace{62pt}PTR=SQRT(PATT(K,1)**2+PATT(K,2)**2) \\
1698 C........\>\>calculate pt distribution and weight with normalized\\
1699 C........\>\>Glauber probability to get minimum bias result:\\
1700 \>\> \hspace{62pt}IF (PTR .GT. 10.0) GO TO 150 \\
1701 \>\> \hspace{62pt}IPT=PTR/0.2 \\
1702 \>\> \hspace{62pt}DNDP(IPT)=DNDP(IPT)+1.0/W\_GB/FLOAT(N\_EVENT)/0.2 \\
1703 150\>\> \hspace{48pt}CONTINUE \\
1704 200\>\> \hspace{24pt}CONTINUE \\
1705 300\>\> CONTINUE \\
1706 C....renormalize the distribution by the renormalized Glauber \>\> \\
1707 C....probability which excludes the events without any interaction: \>\> \\
1708 \>\> IF(NONT.NE.0) THEN \\
1709 \>\> \hspace{24pt}DO 400 I=1,50 \\
1710 \>\> \hspace{48pt}DNDP(I)=DNDP(I)*GBTOT/GNORM \\
1711 400\>\> \hspace{24pt}CONTINUE \\
1712 \>\> ENDIF \\
1713 \>\> STOP \\
1714 \>\> END
1715 \end{tabbing}
1716 }
1717
1718
1719
1720 \subsection{Events with triggered hard processes}
1721
1722 Sometimes, users may want to study events with a hard process.
1723 Since these processes, especially with large transverse momentum, have
1724 very small cross section, it is very inefficient to sort them out among
1725 huge number of ordinary events. However, in HIJING, one can trigger
1726 on such events and generate one hard process in each event with the
1727 background correctly incorporated. One can then calculate the absolute
1728 cross section of such events by using the information stored in
1729 HINT(12) (inelastic $N$-$N$ cross section) and HINT1(59) ( cross section
1730 of triggered process in $N$-$N$ collisions). HIPR1(10) is used to
1731 specify the $P_T$ value or its range.
1732
1733 In the current version, both large $P_T$ jets (IHPR2(3)=1)
1734 and direct photon production (IHPR2(3)=2) are included. In the
1735 following, we give an example on how to generate a pair of large $P_T$
1736 jets above 20 GeV/$c$ in a central $Au+Au$ collision
1737 at $\sqrt{s}=200$ GeV/n.
1738
1739
1740 {\tt
1741 \begin{tabbing}
1742 AAAAA\=AAA\= \kill
1743 \> \>CHARACTER FRAME*8, PROJ*8, TARG*8 \\
1744 \>\> COMMON/HIPARNT/HIPR1(100), IHPR2(50), HINT1(100), IHNT2(50) \\
1745 C.....switch off jet quenching: \>\> \\
1746 \>\> IHPR2(4)=0 \\
1747 C.....switch on triggered jet production: \>\>\\
1748 \>\> IHPR2(3)=1 \\
1749 C.....set the pt range of the triggered jets: \>\> \\
1750 \>\> HIPR1(10)=-20 \\
1751 C....initialize HIJING for Au+Au collisions at c.m. energy of 200 GeV: \> \>\\
1752 \>\> EFRM=200.0 \\
1753 \>\> FRAME='CMS' \\
1754 \>\> PROJ='A' \\
1755 \>\> TARG='A' \\
1756 \>\> IAP=197 \\
1757 \>\> IZP=79 \\
1758 \>\> IAT=197 \\
1759 \>\> IZT=79 \\
1760 \>\> CALL HIJSET (EFRM, FRAME, PROJ, TARG, IAP, IZP, IAT, IZT) \\
1761 C....generating one central event with triggered jet production:\>\> \\
1762 \>\> BMIN=0.0 \\
1763 \>\> BMAX=0.0 \\
1764 \>\> CALL HIJING (FRAME, BMIN, BMAX) \\
1765 C....print out flavor code of the first jet:\>\> \\
1766 \>\> WRITE(*,*) IHNT2(9) \\
1767 C....and its four momentum:\>\> \\
1768 \>\> WRITE(*,*) HINT1(21), HINT1(22), HINT1(23), HINT1(24) \\
1769 C....print out flavor code of the second jet:\>\> \\
1770 \>\> WRITE(*,*) IHNT2(10) \\
1771 C....and its four momentum:\>\> \\
1772 \>\> WRITE(*,*) HINT1(31), HINT1(32), HINT1(33), HINT1(34) \\
1773 \>\> STOP \\
1774 \>\> END
1775 \end{tabbing}
1776 }
1777
1778
1779
1780 \section*{Acknowledgements}
1781
1782
1783 During the development of this program, we benefited a lot
1784 from discussions with J.~Carroll, J.~W.~Harris, P.~Jacobs,
1785 M.~A.~Bloomer, and A.~Poskanzer.
1786 We would like to thank T.~Sj\"{o}strand for making available
1787 JETSET and PYTHIA Monte Carlo programs on which HIJING is based on.
1788 We would also like to thank K.~J.~Eskola for helpful comments and
1789 discussions.
1790
1791
1792 \section*{Appendix: Flavor Code}
1793
1794 For users' reference, a selection of flavor codes from JETSET 7.2
1795 are listed below. For full list please check JETSET documentation.
1796 The codes for anti-particles are just the negative values of the
1797 corresponding particles.
1798
1799 \begin{tabbing}
1800 bbbbbbbbbbbbbbb\=bbbbbb\=bbbbbbbbbbbbbb\=bbbbbb\= \kill
1801 Quarks and leptons \> \> \> \> \\
1802 \> 1 \>d \>11 \>$e^-$ \\
1803 \> 2 \>u \>12 \>$\nu_e$ \\
1804 \> 3 \>s \>13 \>$\mu^-$ \\
1805 \> 4 \>c \>14 \>$\nu_{\mu}$ \\
1806 \> 5 \>b \>15 \>$\tau^-$ \\
1807 \> 6 \>t \>16 \>$\nu_{\tau}$ \\
1808 \>\>\>\> \\
1809 Gauge bosons \>\>\>\> \\
1810 \> 21 \>g \>\> \\
1811 \> 22 \>$\gamma$ \>\> \\
1812 \>\>\>\> \\
1813 Diquarks \>\>\>\> \\
1814 \> \> \>1103 \>dd$_1$ \\
1815 \> 2101 \>ud$_0$ \>2103 \>ud$_1$ \\
1816 \> \> \>2203 \>uu$_1$ \\
1817 \> 3101 \>sd$_0$ \>3103 \>sd$_1$ \\
1818 \> 3201 \>su$_0$ \>3203 \>su$_1$ \\
1819 \> \> \>3303 \>ss$_1$ \\
1820 \>\>\>\> \\
1821 Mesons \>\>\>\> \\
1822 \> 211 \>$\pi^+$ \>213 \>$\rho^+$ \\
1823 \> 311 \>K$^0$ \>313 \>K$^{*0}$ \\
1824 \> 321 \>K$^+$ \>323 \>K$^{*+}$ \\
1825 \> 411 \>D$^+$ \>413 \>D$^{*+}$ \\
1826 \> 421 \>D$^0$ \>423 \>D$^{*0}$ \\
1827 \> 431 \>D$_{\mbox{s}}^+$
1828 \>433 \>D$_{\mbox{s}}^{*+}$ \\
1829 \> 511 \>B$^0$ \>513 \>B$^{*0}$ \\
1830 \> 521 \>B$^+$ \>523 \>B$^{*+}$ \\
1831 \> 531 \>B$_{\mbox{s}}^0$
1832 \>533 \>B$_{\mbox{s}}^{*0}$ \\
1833 \> 111 \>$\pi^0$ \>113 \>$\rho^0$ \\
1834 \> 221 \>$\eta$ \>223 \>$\omega$ \\
1835 \> 331 \>$\eta'$ \>333 \>$\phi$ \\
1836 \> 441 \>$\eta_{\mbox{c}}$ \>443 \>J/$\psi$ \\
1837 \> 551 \>$\eta_{\mbox{b}}$ \>553 \>$\Upsilon$ \\
1838 \> 661 \>$\eta_{\mbox{t}}$ \>663 \>$\Theta$ \\
1839 \> 130 \>K$_L^0$ \>\> \\
1840 \> 310 \>K$_S^0$ \>\> \\
1841 \>\>\>\> \\
1842 Baryons \>\>\>\> \\
1843 \> \> \>1114 \>$\Delta^-$ \\
1844 \> 2112 \>n \>2114 \>$\Delta^0$ \\
1845 \> 2212 \>p \>2214 \>$\Delta^+$ \\
1846 \> \> \>2224 \>$\Delta^{++}$ \\
1847 \> 3112 \>$\Sigma^-$ \>3114 \>$\Sigma^{*-}$ \\
1848 \> 3122 \>$\Lambda^0$ \> \> \\
1849 \> 3212 \>$\Sigma^0$ \>3214 \>$\Sigma^{*0}$ \\
1850 \> 3222 \>$\Sigma^+$ \>3224 \>$\Sigma^{*+}$ \\
1851 \> 3312 \>$\Xi^-$ \>3314 \>$\Xi^{*-}$ \\
1852 \> 3322 \>$\Xi^0$ \>3324 \>$\Xi^{*0}$ \\
1853 \> \> \>3334 \>$\Omega^-$ \\
1854 \> 4112 \>$\Sigma_{\mbox{c}}^0$
1855 \>4114 \>$\Sigma_{\mbox{c}}^{*0}$ \\
1856 \> 4122 \>$\Lambda_{\mbox{c}}^+$ \> \> \\
1857 \> 4212 \>$\Sigma_{\mbox{c}}^+$
1858 \>4214 \>$\Sigma_{\mbox{c}}^{*+}$ \\
1859 \> 4222 \>$\Sigma_{\mbox{c}}^{++}$
1860 \>4224 \>$\Sigma_{\mbox{c}}^{*++}$ \\
1861 \> 4132 \>$\Xi_{\mbox{c}}^0$ \> \> \\
1862 \> 4312 \>$\Xi'$$_{\mbox{c}}^0$
1863 \>4314 \>$\Xi_{\mbox{c}}^{*0}$ \\
1864 \> 4232 \>$\Xi_{\mbox{c}}^+$ \> \> \\
1865 \> 4322 \>$\Xi'$$_{\mbox{c}}^+$
1866 \>4324 \>$\Xi_{\mbox{c}}^{*+}$ \\
1867 \> 4332 \>$\Omega_{\mbox{c}}^0$
1868 \>4334 \>$\Omega_{\mbox{c}}^{*0}$ \\
1869 \> 5112 \>$\Sigma_{\mbox{b}}^-$
1870 \>5114 \>$\Sigma_{\mbox{b}}^{*-}$ \\
1871 \> 5122 \>$\Lambda_{\mbox{b}}^0$ \>\> \\
1872 \> 5212 \>$\Sigma_{\mbox{b}}^0$
1873 \>5214 \>$\Sigma_{\mbox{b}}^{*0}$ \\
1874 \> 5222 \>$\Sigma_{\mbox{b}}^+$
1875 \>5224 \>$\Sigma_{\mbox{b}}^{*+}$
1876 \end{tabbing}
1877
1878 \pagebreak
1879
1880 \begin{thebibliography}{99}
1881
1882 \bibitem{review} S.~Shuryak, Phys. Rep. {\bf 61}, 71 (1980); D.~Gross,
1883 R.~Pisarsky and L.~Yaffe, Rev. Mod. Phys. {\bf 53}, 43 (1981);
1884 H.~Satz, Ann. Rev. Nucl. Part. Sci. {\bf 35}, 245 (1985);
1885 L.~McLerran, Rev. Mod. Phys. {\bf 58}, 1021 (1986).
1886 \bibitem{kaja} K.~Kajantie, P.~V.~Landshoff and J.~Lindfors, Phys. Rev. Lett.
1887 {\bf 59}, 2517 (1987); K.~J.~Eskola, K.~Kajantie and J.~Lindfors,
1888 Nucl. Phys. {\bf B323}, 37 (1989); G.~Calucci and D.~Treleani,
1889 Phys. Rev. D {\bf 41}, 3367 (1990).
1890 \bibitem{geist} W.~M.~Geist, {\em et at.}, Phys. Rep. {\bf 197}, 263 (1990).
1891 \bibitem{ua2jet} M.~Manner {\em et al.}, Phys. Lett. {\bf 118B}, 203 (1982);
1892 G.~Arnison {\em et al.}, {\bf 123B}, 115 (1983).
1893 \bibitem{alba88} C.~Albajar, {\em et al.}, Nucl. Phys. {\bf B309},
1894 405 (1988); {\bf B335}, 261 (1990).
1895 \bibitem{ua1minijet} C.~Albajar, {\em et al.}, Nucl. Phys. {\bf B309},
1896 405 (1988).
1897 \bibitem{gaisser} A.~Capella and J.~Tran Thanh Van, Z.~Phys. {\bf C 23},
1898 165 (1984); T.~K.~Gaisser and F.~Halzen, Phys. Rev. Lett. {\bf 54},
1899 1754 (1985); G.~Pancheri and Y.~N.~Srivastava, Phys. Lett. {\bf 182B},
1900 199 (1986); L.~Durand and H.~Pi, Phys. Rev. Lett. {\bf 58}, 303 (1987).
1901 \bibitem{sjostrand} T.~Sj\"{o}strand and M.~van Zijl, Phys. Rev. {\bf D 36},
1902 2019 (1987).
1903 \bibitem{wang91a}X.~N.~Wang, Phys. Rev. {\bf D 43}, 104 (1991).
1904 \bibitem{gyu89} M.~Gyulassy and M.~Pl\"{u}mer, Phys. Lett. {\bf 243B},
1905 432 (1990).
1906 \bibitem{hijing} X.~N.~Wang and M.~Gyulassy, Phys. Rev. {\bf D 44},
1907 3501 (1991).
1908 \bibitem{lund} B.~Andersson, G.~Gustafson, G.~Ingelman and T.~Sj\"{o}strand,
1909 Phys. Rep. {\bf 97},31 (1983).
1910 \bibitem{fritiof} B.~Andersson, G.~Gustafson and B.~Nilsson-Almquist,
1911 Nucl. Phys. {\bf B281}, 289 (1987); B.~Nilsson-Almqvist and
1912 E.~Stenlund, Comp. Phys. Comm. {\bf 43}, 387 (1987).
1913 \bibitem{dpm} A.~Capella, U.~Sukhatme and J.~Tran Thanh Van, Z.~Phys.
1914 {\bf C 3}, 329 (1980); J.~Ranft, Phys. Rev. D {\bf 37}, 1842 (1988);
1915 Phys. Lett. {\bf 188B}, 379 (1987).
1916 \bibitem{pythia} H.-U.~Bengtsson and T.~Sj\"{o}strand,
1917 Comp. Phys. Commun. {\bf 46}, 43 (1987).
1918 \bibitem{shadow1} EM Collab., J.~Ashman, {\em et al.}, Phys. Lett. {\bf 202B},
1919 603 (1988); EM Collab., M.~Arneodo, {\em et al.}, Phys. Lett.
1920 {\bf 211B}, 493 (1988).
1921 \bibitem{wang92a} X.~N.~Wang and M.~Gyulassy, Phys. Rev. Lett. {\bf 68},
1922 148 (1992).
1923 \bibitem{gyu92} M.~Gyulassy, {\em et al.}, Nucl. Phys. {\bf A 538}, 37c (1992).
1924 \bibitem{hijingpp} X.~N.~Wang and M.~Gyulassy, Phys. Rev. {\bf D 45},
1925 844 (1992).
1926 \bibitem{geiger} K.~Geiger and B.~M\"{u}ller, Nucl. Phys. {\bf B 369},
1927 600 (1992).
1928 \bibitem{jetset} T.~Sj\"{o}strand, Comput. Phys. Commun. {\bf 39}, 347 (1986);
1929 T.~Sj\"{o}strand and M.~Bengtsson, Comput. Phys. Commun.
1930 {\bf 43}, 367 (1987)
1931 \bibitem{eichten} E.~Eichten, I.~Hinchliffe and C.~Quigg, Rev. Mod. Phys.
1932 {\bf 56}, 579 (1984).
1933 \bibitem{duke} D.~W.~Duke and J.~F.~Owens, Phys. Rev. {\bf D 30}, 50 (1984).
1934 \bibitem{heureux} P.~l'Heureux, {\em et al.}, Phys. Rev. {\bf D 32},
1935 1681 (1985); J.~Dias de Deus and J.~Kwiecinski, Phys. Lett.
1936 {\bf 196B}, 537 (1987); R.~C.~Hwa, Phys. Rev. {\bf D 37}, 1830 (1988).
1937 \bibitem{goulianos} K.~Goulianos, Phys. Rep. {\bf 101}, 169 (1983).
1938 \bibitem{dipole} G.~Gustafson and U.~Pettersson, Nucl. Phys. {\bf B306},
1939 746 (1988); L.~L\"{o}nnblad, Lund preprint LU-TP-89-10.
1940 \bibitem{gunion} J.~K.~Gunion and G.~Bertsch, Phys. Rev. {\bf D 25},
1941 746 (1982).
1942 \bibitem{eskola93} K.~J.~Eskola, preprint LBL-32339,
1943 Nucl. Phys. {\bf B} in press.
1944 \bibitem{shadow2} A.~H.~Mueller and J.~Qiu, Nucl. Phys. {\bf B 268},
1945 427 (1986); J.~Qiu, Nucl. Phys. {\bf B 291}, 746 (1987).
1946 \bibitem{dedx} M.~Gyulassy and X.~N.~Wang, preprint LBL-32682.
1947
1948
1949 \end{thebibliography}
1950
1951
1952 \pagebreak
1953
1954 {\noindent\Large\bf Figure Captions}
1955 \vspace{24pt}
1956 \begin{description}
1957
1958 \item[Fig. 1] The rapidity distribution of charged particles produced in
1959 central $Au+Au$ collisions at $\sqrt{s}=200$ GeV/n, obtained
1960 from the example program for fixed impact parameter.
1961
1962 \item[Fig. 2] The transverse momentum distribution of charged particles
1963 in central $Au+Au$ collisions, obtained from the example
1964 program for fixed impact parameter.
1965
1966 \end{description}
1967
1968 \end{document}
1969
1970
1971
1972
1973