Back to home page

sPhenix code displayed by LXR

 
 

    


Warning, /coresoftware/generators/hijing/doc/documentation.tex is written in an unsupported language. File is not indexed.

0001 \documentstyle[12pt]{article}
0002 \textwidth=6.5in
0003 \textheight=9in
0004 \hoffset=-0.5in
0005 \voffset=-1in
0006 \newcommand{\doe}{This work was supported by the Director, Office of Energy 
0007                   Research, Division of Nuclear Physics of the Office of High 
0008                   Energy and Nuclear Physics of the U.S. Department of Energy 
0009                   under Contract No. DE-AC03-76SF00098.}
0010 
0011 \begin{document}
0012 
0013 \begin{titlepage}
0014 
0015 \begin{flushright}
0016      {\large LBL-34246}
0017   \end{flushright}
0018 \vskip 2\baselineskip
0019 \renewcommand{\thefootnote}{\fnsymbol{footnote}}
0020 \setcounter{footnote}{0}
0021 \begin{center}
0022 \baselineskip=24pt
0023 \mbox{}\\[5ex]
0024 {\Large HIJING 1.0: A Monte Carlo Program for Parton and Particle Production
0025 in High Energy Hadronic and Nuclear Collisions{\footnote{\doe}}}\\[5ex]
0026 \baselineskip=18pt
0027 {\large Miklos Gyulassy}\\[2ex]
0028 {\em Physics Department, Columbia University, New York, NY 10027}\\[2ex]
0029 {\large Xin-Nian Wang}\\[2ex]
0030 {\em Nuclear Science Division, Mailstop 70A-3307, 
0031         Lawrence Berkeley Laboratory}\\
0032 {\em University of California, Berkeley, CA 94720}\\
0033         \mbox{}\\[3ex]
0034 \today\\[5ex]
0035 \end{center}
0036 
0037 \begin{abstract}
0038 \normalsize
0039 \baselineskip=24pt
0040         Based on QCD-inspired models for multiple jets production, we 
0041 developed a Monte Carlo program to study jet and the associated particle 
0042 production in high energy $pp$, $pA$ and $AA$ collisions. The physics behind
0043 the program which includes multiple minijet production, soft excitation,
0044 nuclear shadowing of parton distribution functions and jet interaction 
0045 in dense matter is briefly discussed. A detailed description of the
0046 program and instructions on how to use it are given.
0047 \end{abstract}
0048 
0049 \end{titlepage}
0050 
0051 \newcommand{\lsim}
0052 {\ \raisebox{2.75pt}{$<$}\hspace{-9.0pt}\raisebox{-2.75pt}{$\sim$}\ }
0053 \newcommand{\gsim}
0054 {\ \raisebox{2.75pt}{$>$}\hspace{-9.0pt}\raisebox{-2.75pt}{$\sim$}\ }
0055 
0056 \baselineskip=18pt
0057 \parindent=0.25in
0058 \abovedisplayskip=24pt
0059 \belowdisplayskip=24pt
0060 
0061 
0062 \begin{center}
0063 {\Large\bf PROGRAM SUMMARY}
0064 \end{center}
0065 
0066 \noindent{\em Title of program}: HIJING 1.0\\
0067 \vspace{0pt}\\
0068 {\em Catalogue number}:\\
0069 \vspace{0pt}\\
0070 {\em Program obtainable from}: xnwang@nsdssd.lbl.gov\\
0071 \vspace{0pt}\\
0072 {\em Computer for which the program is designed}: VAX, VAXstation, 
0073 SPARCstation and other computers with a FORTRAN 77 compiler
0074 compiler\\
0075 \vspace{0pt}\\
0076 {\em Computer}: SPARCstation ELC; {\em Installation}: Nuclear Science Division,
0077 Lawrence Berkeley Laboratory, USA\\
0078 \vspace{0pt}\\
0079 {\em Operating system}: SunOS 4.1.1\\
0080 \vspace{0pt}\\
0081 {\em Programming language used}: FORTRAN 77\\
0082 \vspace{0pt}\\
0083 {\em High speed storage required}: 90k word\\
0084 \vspace{0pt}\\
0085 {\em No. of bits  in a word}: 32\\
0086 \vspace{0pt}\\
0087 {\em Peripherals used}: terminal for input, terminal or printer for output\\
0088 \vspace{0pt}\\
0089 {\em No. of lines in combined program and test deck}: 6397 \\
0090 \vspace{0pt}\\
0091 {\em Keywords}: relativistic heavy ion collisions, quark-gluon plasma,
0092 partons, hadrons, nuclei, jets, minijets, particle production, 
0093 parton shadowing, jet quenching.\\
0094 \vspace{0pt}\\
0095 {\em Nature of the physical problem}\\
0096 In high-energy hadron and nuclear interactions, multiple minijet
0097 production becomes more and more important. Especially in relativistic
0098 heavy-ion collisions, minijets are expected to dominate transverse
0099 energy production in the central rapidity region. Particle production
0100 and correlation due to minijets must be investigated in order to
0101 recognize new physics of quark-gluon plasma formation. 
0102 Due to the complication of soft interactions, 
0103 minijet production can only be incorporated in a pQCD
0104 inspired model. The parameters in this model have to be tested first
0105 against the wide range of data in $pp$ collisions. When extrapolating
0106 to heavy-ion collisions, nuclear effects such as parton shadowing and
0107 final state interactions have to be considered.\\
0108 \vspace{0pt}\\
0109 {\em Method of solution}\\
0110         Based on a pQCD-inspired model, multiple minijet production
0111 is combined together with Lund-type model for soft interactions. Within
0112 this model, triggering on large $P_T$ jet production automatically
0113 biases toward enhanced minijet production. Binary approximation and Glauber 
0114 geometry for multiple interaction are used to simulate $pA$ and $AA$
0115 collisions. A parametrized parton distribution function inside
0116 a nucleus is used to take into account parton shadowing. Jet quenching
0117 is modeled by an assumed energy loss $dE/dz$ of partons traversing
0118 the produced dense matter. A simplest color configuration is assumed
0119 for the multiple jet system and Lund jet fragmentation model is used
0120 for the hadronization.\\
0121 \vspace{0pt}\\
0122 {\em Restrictions on the complexity of the problem}\\
0123         The program is only valid for collisions with c.m.
0124 energy ($\sqrt{s}$) above 4 GeV/n. For central $Pb+Pb$ collisions, 
0125 some arrays have to be extended above $\sqrt{s}=10$ TeV/n.\\
0126 \vspace{0pt}\\
0127 {\em Typical running time}\\
0128 The running time largely depends on the energy and the type of
0129 collisions. For example (not including initialization):\\
0130 \begin{tabbing}
0131 $Pb+Pb$(central) AAAA\= $\sqrt{s}$=6.4 TeV/n \= $\sim$ events/min \kill
0132 $pp$ \> $\sqrt{s}$=200 GeV \> $\sim$ 700 events/min.\\
0133 $pp$ \> $\sqrt{s}$=1.8 TeV \> $\sim$ 250 events/min.\\
0134 $Au+Au$(central) \> $\sqrt{s}$=200 GeV/n \> $\sim$ 1 event/min.\\
0135 $Pb+Pb$(central) \> $\sqrt{s}$=6.4 TeV/n \> $\sim$ 1 event/10 min.
0136 \end{tabbing}
0137 \mbox{}\\
0138 {\em Unusual features of the program}\\
0139         The random number generator used in the program is a 
0140 VAX VMS system subroutine RAN(NSEED). When compiled on a
0141 SPARCstation, {\tt -xl} flag should be used. This function
0142 is not portable. Therefore, one should supply a random
0143 number generator to replace this function whenever a problem
0144 is encountered.
0145 
0146 \newpage
0147 
0148 \begin{center}
0149 {\Large\bf LONG WRITE-UP}
0150 \end{center}
0151 
0152 \section{Introduction}
0153 
0154         One of the goals of ultrarelativistic heavy ion experiments is
0155 to study the quark-gluon substructure of nuclear matter and the
0156 possibility of a phase transition from hadronic matter to quark-gluon
0157 plasma (QGP)\cite{review} at extremely high energy densities. 
0158 Unlike heavy ion collisions
0159 at the existing AGS/BNL and SPS/CERN energies, most of the physical
0160 processes occurring at very early times in the violent collisions of 
0161 heavy nuclei at RHIC/BNL and the proposed LHC/CERN energies involve
0162 hard or semihard parton scatterings\cite{kaja} 
0163 which will result in enormous amount of jet production and 
0164 can be described in terms of perturbative QCD (pQCD).
0165 
0166         The concept of jets and their association with 
0167 hard parton scatterings has been well established in hadronic 
0168 interactions and they have been proven to play a major role 
0169 in every aspect of $p\overline{p}$ collisions at CERN 
0170 $\mbox{Sp}\overline{\mbox{p}}\mbox{S}$ and Fermilab Tevatron 
0171 energies\cite{geist}.  Experimentally, jets are identified 
0172 as hadronic clusters whose transverse energy $E_T$ can be 
0173 reconstructed from the calorimetrical study\cite{ua2jet,alba88} 
0174 of the events. However, when the transverse energy of a jet becomes 
0175 smaller, $E_T<5$ GeV, it is increasingly difficult to 
0176 resolve it from the underlying background\cite{ua1minijet},
0177 though theoretically, we would 
0178 expect that hard parton scatterings must continue to lower 
0179 transverse momentum. We usually refer to those as minijets 
0180 whose transverse energy are too low to be resolved 
0181 experimentally but the associated parton scattering 
0182 processes may still be calculable via pQCD. Assuming 
0183 independent production, it has been shown that 
0184 the multiple minijets production is important in 
0185 $p\bar{p}$ interactions to account for the increase 
0186 of total cross section\cite{gaisser} and the violation 
0187 of Koba-Nielsen-Olesen (KNO) scaling of the charged 
0188 multiplicity distributions\cite{sjostrand,wang91a}.
0189   
0190         In high energy heavy ion collisions, minijets 
0191 have been estimated\cite{kaja} to produce 50\% (80\%) of 
0192 the transverse energy in central heavy ion collisions at 
0193 RHIC (LHC) energies. While not resolvable as distinct jets,
0194 they would lead to a wide variety of correlations, as in
0195 $pp$ or $p\bar{p}$ collisions, among observables such as
0196 multiplicity, transverse momentum, strangeness, and
0197 fluctuations that compete with the expected signatures
0198 of a QGP. Therefore, it is especially important to
0199 calculate these background processes. Furthermore, 
0200 the calculation could also provide the initial
0201 condition to address the issues of thermalization
0202 and equilibration of a quark gluon plasma. In this
0203 respect, the interactions of high $P_T$ jets inside 
0204 the dense medium is also interesting since the 
0205 variation of jet quenching phenomenon may serve
0206 as one of the signatures of the QGP transition\cite{gyu89}.
0207   
0208 
0209         To provide a theoretical laboratory for studying 
0210 jets in high-energy nuclear interactions and testing the
0211 proposed signatures such as jet quenching\cite{gyu89}, 
0212 we have developed  a Monte Carlo model, 
0213 HIJING (heavy ion jet interaction generator)\cite{hijing},
0214 which combines a QCD inspired model for jet production with the 
0215 Lund model\cite{lund} for jet fragmentation. 
0216 The formulation of HIJING was guided by the Lund FRITIOF\cite{fritiof}
0217 and Dual Parton model\cite{dpm} for soft $A+B$ reactions at
0218 intermediate energies ($\sqrt{s}\lsim 20$ GeV/nucleon) and
0219 the successful implementation of pQCD processes in 
0220 PYTHIA\cite{sjostrand,pythia}
0221 model for hadronic collisions. HIJING is designed
0222 mainly to explore the range of possible initial conditions
0223 that may occur in relativistic heavy ion collisions. To study
0224 the nuclear effects, we also included nuclear shadowing\cite{shadow1}
0225 of parton structure functions and a schematic model of final
0226 state interaction of high $P_T$ jets in terms of an effective
0227 energy loss parameter, $dE/dz$\cite{wang92a,gyu92}. 
0228 At $pp$ and $p\bar{p}$ level,
0229 HIJING also made an important effort to address the interplay
0230 between low $P_T$ nonperturbative physics and the hard pQCD
0231 processes. This Monte Carlo model has been tested extensively
0232 against data on $p+p(\bar{p})$ over a wide energy range,
0233 $\sqrt{s}=50$-1800 GeV and $p+A$, $A+A$ collisions at moderate
0234 energies $\sqrt{s}\leq 20$  GeV/n \cite{hijing,hijingpp}.
0235 However, in this version of HIJING program, the space-time
0236 development of final state interaction among produced 
0237 partons\cite{geiger} and hadrons was not considered.
0238 
0239         In this paper, we present a detailed description of
0240 the Monte Carlo program together with a brief summary of
0241 physical motivations. Since the program uses subroutines
0242 of PYTHIA to generate the kinetic variables for each
0243 hard scattering and the associated radiations, and JETSET
0244 for string fragmentation, we refer readers to the original 
0245 publications\cite{pythia,jetset} for the description of these 
0246 programs. The physics involved in HIJING has been discussed
0247 extensively\cite{hijing,hijingpp,wang92a}. This paper is 
0248 intended to be a documented
0249 reference for the overall structure and detailed description
0250 of the program.
0251 
0252         The organization of the paper is as the following. 
0253 In Section 2, we give a brief review of the QCD inspired model 
0254 for multiple jets production and soft interaction in 
0255 nucleon-nucleon collisions. The nuclear effects on jet
0256 production and fragmentation are discussed in Section 3. 
0257 Section 4 will give a detailed description of the program.
0258 Finally in Section 5 we will give instructions on how to 
0259 use the program and some simple examples are provided.  
0260 
0261 \section{Parton Production in $pp$ Collisions}
0262 
0263         The QCD inspired model is based on the assumption of 
0264 independent production of multiple minijets. It determines 
0265 the number of minijets per nucleon-nucleon collisions. 
0266 For each hard or semihard interaction the kinetic variables of 
0267 the scattered partons are determined by calling PYTHIA\cite{pythia}
0268 subroutines. The  scheme for the accompanying soft interactions 
0269 is similar to FRITIOF model\cite{fritiof} with some difference 
0270 in the successive soft excitation of the leading quarks or 
0271 diquarks and $P_T$ transfer involved.  Since minijet production
0272 is dominated by gluon scatterings, we assume that quark 
0273 scatterings only involve valence quarks and restrict the subsequent
0274 hard processes to gluon-gluon scatterings. Simplification is
0275 also made for the color flow in the case of multiple jet
0276 production. Produced gluons are ordered in their rapidities
0277 and then connected with their parent valence quarks or diquarks 
0278 to form string systems. Finally, fragmentation subroutine of JETSET 
0279 is called for hadronization. 
0280 
0281 
0282 \subsection{Cross sections}
0283 \label{sec:jet1}
0284 
0285         In pQCD, the cross section of hard parton scatterings
0286 can be written as\cite{eichten}
0287 \begin{equation}
0288         \frac{d\sigma_{jet}}{dP_T^2dy_1dy_2} =
0289         K\sum_{a,b} x_1 x_2 f_a(x_1,P_T^2)f_b(x_2,P_T^2)
0290         d\sigma^{ab}(\hat{s},\hat{t},\hat{u})/d\hat{t}, \label{eq:sjet1}
0291 \end{equation}
0292 where the summation runs over all parton species, $y_1$,$y_2$ 
0293 are the rapidities of the scattered partons and $x_1$,$x_2$ are 
0294 the fractions of momentum carried by the initial partons and 
0295 they are related by $x_1=x_T(e^{y_1}+e^{y_2})/2$, 
0296 $x_2=x_T(e^{-y_1}+e^{-y_2})$, $x_T=2P_T/\sqrt{s}$. A factor, 
0297 $K\approx 2$ accounts roughly for the higher order corrections. 
0298 The default structure functions, $f_a(x,Q^2)$, in HIJING are taken 
0299 to be Duke-Owens structure function set 1\cite{duke}. 
0300 In future versions some other new parametrizations might be included. 
0301 
0302         Integrating Eq.~\ref{eq:sjet1} with a low $P_T$ 
0303 cutoff $P_0$, we can calculate the total inclusive jet cross 
0304 section $\sigma_{jet}$. The average number of semihard parton collisions
0305 for a nucleon-nucleon collision at impact parameter $b$ is 
0306 $\sigma_{jet}T_N(b)$, where $T_N(b)$ is partonic overlap function 
0307 between the two nucleons. In terms of a semiclassical 
0308 probabilistic model\cite{gaisser,wang91a,heureux}, the probability 
0309 for multiple minijets production is then
0310 \begin{equation}
0311         g_j(b)=\frac{[\sigma_{jet}T_N(b)]^j}{j!}e^{-\sigma_{jet}T_N(b)},\;\;
0312                 j\geq 1. \label{eq:sjet3}
0313 \end{equation}
0314 Similarly, we can also represent the soft interactions by 
0315 an inclusive cross section $\sigma_{soft}$ which, unlike 
0316 $\sigma_{jet}$, can only be determined phenomenologically.  
0317 The probability for only soft interactions without any hard 
0318 processes is then,
0319 \begin{equation}
0320         g_0(b)=[1-e^{-\sigma_{soft}T_N(b)}]e^{-\sigma_{jet}T_N(b)}.
0321                 \label{eq:sjet4}
0322 \end{equation}
0323 We have then the total inelastic cross section for nucleon-nucleon 
0324 collisions,
0325 \begin{eqnarray}
0326         \sigma_{in}&=&\int{d^2b}\sum_{j=0}^{\infty}g_j(b) \nonumber \\
0327         &=&\int{d^2b}[1-e^{-(\sigma_{soft}+\sigma_{jet})T_N(b)}].
0328                 \label{eq:cin}
0329 \end{eqnarray}
0330 Define a real eikonal function,
0331 \begin{equation}
0332         \chi(b,s)\equiv\frac{1}{2}\sigma_{soft}(s)T_N(b,s)+
0333                         \frac{1}{2}\sigma_{jet}(s)T_N(b,s), \label{eq:eiko}
0334 \end{equation}
0335 we have the elastic, inelastic, and total cross sections of
0336 nucleon-nucleon collisions,
0337 \begin{equation}
0338         \sigma_{el}=\pi\int_{0}^{\infty}db^2\left[1-
0339                 e^{-\chi(b,s)}\right]^2, \label{eq:cin1}
0340 \end{equation}
0341 \begin{equation}
0342         \sigma_{in}=\pi\int_{0}^{\infty}db^2\left[1-
0343                 e^{-2\chi(b,s)}\right],\label{eq:cin2}
0344 \end{equation}
0345 \begin{equation}
0346         \sigma_{tot}=2\pi\int_{0}^{\infty}db^2\left[1-
0347                 e^{-\chi(b,s)}\right],\label{eq:cin3}
0348 \end{equation}
0349 We assume that the parton density in a nucleon can be 
0350 approximated  by the Fourier transform of a dipole form factor. 
0351 The overlap function is then,
0352 \begin{equation}
0353         T_N(b,s)=2\frac{\chi_0(\xi)}{\sigma_{soft}(s)},\label{eq:over1}
0354 \end{equation}
0355 with
0356 \begin{equation} 
0357         \chi_0(\xi)=\frac{\mu_0^2}{96}(\mu_0 \xi)^3 K_3(\mu_0 \xi),
0358                 \;\; \xi=b/b_0(s),\label{eq:over2}
0359 \end{equation}
0360 where $\mu_0=3.9$ and $\pi b_0^2(s)\equiv\sigma_0=\sigma_{soft}(s)/2$ 
0361 is a measure of the geometrical size of the nucleon. The 
0362 eikonal function then can be written as,
0363 \begin{equation}
0364         \chi(b,s)\equiv\chi(\xi,s)
0365         =[1+\sigma_{jet}(s)/\sigma_{soft}(s)]\chi_0(\xi).
0366 \end{equation}
0367 
0368         $P_0\simeq 2$ GeV/$c$ and a constant value of 
0369 $\sigma_{soft}(s)=57$ mb are chosen to fit the experimental
0370 data on cross sections\cite{wang91a} in $pp$ and $p\bar{p}$ 
0371 collisions. We shall follow the equations listed above to simulate 
0372 multiple jets production at the level of nucleon-nucleon 
0373 collisions in HIJING Monte Carlo program. Once the number
0374 of hard scatterings is determined, we then use PYTHIA to generate 
0375 the kinetic variables of the scattered partons and the initial
0376 and final state radiations. 
0377 
0378 \subsection{Jet triggering}
0379 \label{sec:jet2}
0380 
0381 
0382 Because the differential cross section of jet production 
0383 decreases for several orders in magnitude from small to 
0384 large $P_T$, we often have to trigger on jet production 
0385 with specified $P_T$ in order to increase the simulation
0386 efficiency. The triggering can then change the probability
0387 of multiple minijet production and thus the whole event
0388 structure. In particular, such rare processes of large
0389 $P_T$ scatterings most often occur when the impact 
0390 parameter of nucleon-nucleon collision is small so that
0391 the partonic overlap is large. At small impact parameters,
0392 the production of multiple jets is then enhanced.
0393 
0394 If we want to trigger on events which have at least one 
0395 jet with $P_T$ above $P_T^{trig}$, the conditional 
0396 probability for multiple minijet production in the 
0397 triggered events is then\cite{hijing},
0398 \begin{equation}
0399         g_j^{trig}(b) = \frac{[\sigma_{jet}(P_0)T_N(b)]^j}{j!}
0400         \left\{1-\left[\frac{\sigma_{jet}(P_0)-\sigma_{jet}(P_T^{trig})}
0401         {\sigma_{jet}(P_0)}\right]^j\right\}e^{-\sigma_{jet}(P_0)T_N(b)}.
0402                  \label{eq:trigjet4}
0403 \end{equation}
0404 It is obvious that $g_j^{trig}(b)$ returns back to $g_j(b)$ 
0405 (Eq. \ref{eq:sjet3}) when $P_T^{trig}=P_0$.  Summing over $j\geq 1$
0406 leads to the expected total probability for having at least one 
0407 jet with $P_T>P_T^{trig}$,
0408 \begin{equation}
0409         g^{trig}(b)=1-e^{-\sigma_{jet}(P_T^{trig})T_N(b)}, 
0410                  \label{eq:trigjet5}
0411 \end{equation}
0412 
0413         Since $g_j^{trig}(b)$ differs from $g_j(b)$, the 
0414 triggering of a particular jet therefore has changed the 
0415 production rates of the other jets in the same event. 
0416 This triggering effect is especially significant when we 
0417 consider large $P_T^{trig}$.  It becomes more probable to 
0418 produce multiple jets due to the triggering on a high $P_T$ jet. 
0419 In HIJING, we implement Eq.~\ref{eq:trigjet4} by simulating 
0420 two Poisson-like multiple jet distributions with inclusive 
0421 cross sections  $\sigma_{jet}(P_0)-\sigma_{jet}(P_T^{trig})$ 
0422 and $\sigma_{jet}(P_T^{trig})$ respectively. We demand that 
0423 the second one must have at least one jet and convolute the 
0424 two together. The resultant distribution will be the 
0425 triggered distribution. 
0426 
0427 \subsection{Soft interactions}
0428 
0429         Besides the processes with large transverse momentum 
0430 transfer which are described by pQCD, there are also many 
0431 small $P_T$ exchanges or soft interactions between two colliding 
0432 hadrons.  We adopt a variant of the multiple string phenomenological
0433 model for such soft interactions in which multiple soft gluon
0434 exchanges between valence quarks or diquarks lead to longitudinal
0435 string-like excitations. Gluon production from hard processes
0436 and soft radiations are included as kinks in the strings.
0437 The strings then hadronize according to Lund JETSET7.2 fragmentation
0438 scheme.
0439 
0440         In the center of mass frame of two colliding nucleons 
0441 with initial light-cone momenta
0442 \begin{equation}
0443         p_1=(p_1^+,\frac{m_1^2}{p_1^+},{\bf 0}_T),\;\;\;\;
0444         p_2=(\frac{m_2^2}{p_2^-}, p_2^-,{\bf 0}_T),
0445 \end{equation}
0446 and $(p_1+p_2)^2=s$, the excited strings will have final
0447 momenta
0448 \begin{equation}
0449         p'_1=(p_1^+ -P^+,\frac{m_1^2}{p_1^+}+P^-, {\bf P}_T),\;\;\;\; 
0450         p'_2=(\frac{m_2^2}{p_2^-}+P^+, p_2^- -P^-,-{\bf P}_T),  
0451 \end{equation}
0452 after a collective momentum exchange $P=(P^+,P^-,{\bf P}_T)$.
0453 The soft interactions by definition have small transverse
0454 momentum transfer, $P_T<1$ GeV/$c$, while large effective
0455 light-come momentum\cite{fritiof} exchange can give rise to 
0456 two excited strings with large invariant masses. Defining 
0457 \begin{equation}
0458         P^+=x_+\sqrt{s}-\frac{m_2^2}{p_2^-},\;\;\;\;
0459         P^-=x_-\sqrt{s}-\frac{m_1^2}{p_1^+},
0460 \end{equation}
0461 the excited masses of the two strings will be
0462 \begin{equation}
0463         M_1^2=x_-(1-x_+)s-P_T^2, \;\;\;\; M_2^2=x_+(1-x_-)s-P_T^2,
0464                         \label{eq:strnms}
0465 \end{equation}
0466 respectively. If we require that the excited string masses must 
0467 have a minimum value $M_{cut}$, then the kinematically 
0468 allowed region of $x^{\pm}$ 
0469 will be
0470 \begin{equation}
0471         x_{\mp}(1-x_{\pm})\geq M_{Tcut}^2/s, \label{eq:xregn}
0472 \end{equation}
0473 where $M_{Tcut}^2=M_{cut}^2+P_T^2$.
0474 The condition for the above equations to be valid is
0475 \begin{equation}
0476         \sqrt{s}\geq 2M_{Tcut}. \label{eq:smin}
0477 \end{equation}
0478 This is the minimum colliding energy we will require to produce 
0479 two excited strings which can be fragmented into hadrons by the 
0480 Lund string fragmentation model. We have chosen $M_{cut}$ to be 
0481 1.5 GeV/$c^2$ in all our calculations involving nucleon collisions. 
0482 When the energy is smaller than what Eq.~\ref{eq:smin}
0483 requires, we assume that the interaction can be described by 
0484 other processes like single diffractive or $N^{\star}$ (or $\rho$, 
0485 $K^{\star}$ in cases of pions and kaons collisions) excitation. 
0486 However, we usually do not expect that the model is still valid 
0487 at such low energies.  Eq.~\ref{eq:smin} also serves as to 
0488 determine the maximum $P_T$ that the strings can obtain from 
0489 the soft interactions. If hard interactions are  involved, 
0490 the kinetic boundary of string formation is reduced by the
0491 hard scatterings.
0492 
0493         In order to best fit the rapidity distributions of charged
0494 particles, we choose the following distributions for light-cone
0495 momentum transfer,
0496 \begin{equation}
0497         P(x_{\pm})=\frac{(1.0-x_{\pm})^{1.5}}
0498                 {(x_{\pm}^2+c^2/s)^{1/4}},
0499                 \label{eq:xdistr1}
0500 \end{equation}
0501 for nucleons and
0502 \begin{equation}
0503         P(x_{\pm})=\frac{1}{(x_{\pm}^2+c^2/s)^{1/4}
0504                 [(1-x_{\pm})^2+c^2/s]^{1/4}},
0505                 \label{eq:xdistr2}
0506 \end{equation}
0507 for mesons, where $c=0.1$ GeV is a cutoff for computational 
0508 purpose with little theoretical consequences in the model.  
0509 For single-diffractive events whose cross section 
0510 can be obtained from an empirical parametrization\cite{goulianos},
0511 we fix the mass of the diffractive hadron to be its own or its 
0512 vector state excitation and find the mass of the single excited
0513 string according to the well known distribution,
0514 \begin{equation}
0515         P(x_{\pm})=\frac{1}{(x_{\pm}^2+c^2/s)^{1/2}}, \label{eq:xdistr3}
0516 \end{equation}
0517 which lead to the experimentally observed\cite{goulianos} 
0518 mass distribution $dM^2/M^2$ of the disassociated hadrons.
0519 
0520         Before fragmentation, the excited strings are also assumed to
0521 have soft gluon radiation induced by the soft interactions. Such
0522 soft gluon radiation can be approximated by color dipole model
0523 as has been successfully implemented in ARIADNE Monte Carlo
0524 program\cite{dipole}. In HIJING, we adopted subroutines AR3JET
0525 and ARORIE from FRITIOF 1.7\cite{fritiof} to simulate the dipole
0526 radiation which appear as gluon kinks in the string. Since minijets 
0527 are treated explicitly via pQCD, we limit the transverse momentum 
0528 of the radiated gluons below the minijet cutoff $P_{0}=2$ GeV/$c$. 
0529 The limitation on the transverse momentum is a characteristic
0530 feature of induced bremsstrahlung due to soft exchanges\cite{gunion}.
0531 The invariant mass cutoff for strings to radiate is fixed at 
0532 $M_{cut}^{rad}=2$ GeV/$c^2$ by default. 
0533 
0534 
0535 \subsection{$P_T$ kick from soft interactions}
0536 
0537 
0538         As described in the above, hard or semihard scatterings in our 
0539 model have at least transverse momentum of $P_T\geq P_0$. The value of 
0540 $P_0$ we use is the result of a model dependent fit of calculated cross 
0541 sections to the experimental values. One can imagine that the 
0542 corresponding soft interactions, which are characterized by inclusive
0543 cross section $\sigma_{soft}$, will depend on $P_0$. For such 
0544 processes, we include an extra low $P_T<P_0$ transfer to the 
0545 valence quarks or diquarks at string end points. We assume a 
0546 distribution for the $P_T$ kick which extrapolates smoothly to
0547 the high $P_T$ regime of hard scatterings but vary more slowly
0548 for $P_T\ll P_0$,
0549 \begin{equation}
0550         f_{kick}(P_T)\approx\frac{\theta(P_0-P_T)}{(P_T^2+c^2)
0551         (P_T^2+P_{0}^2)},\label{eq:kick}
0552 \end{equation}
0553 where $c=0.1$ GeV/$c$. In practice, the distribution will follow
0554 a Gaussian form when $P_T>P_0$. Since diquarks are composites, 
0555 we also assume that $P_T$ transfer to a diquark is relatively 
0556 suppressed by a form factor with a scale of 1 GeV/$c$.
0557 
0558         This $P_T$ kick to the quarks or diquarks during the soft 
0559 interactions will provide an extra increase in transverse momentum 
0560 to produced hadrons in order to fit the experimental data at low
0561 energies\cite{hijing}. Otherwise, the transverse momentum from pair 
0562 production in the default Lund string fragmentation is not enough 
0563 to account for the higher $P_T$ tail in low energy $pp$ collisions.
0564 
0565 \section{Parton Production in $pA$ and $AA$ Collisions}
0566 
0567         To include the nuclear effects on jet production and 
0568 fragmentation, we also consider the EMC\cite{shadow1}
0569 effect of the parton structure functions in nuclei and the 
0570 interaction of the produced jets with the excited nuclear 
0571 matter in heavy ion collisions. 
0572 
0573 
0574 \subsection{Binary approximation and initial state interaction}
0575 
0576 
0577 
0578         We assume that a nucleus-nucleus collision can be decomposed 
0579 into binary nucleon-nucleon collisions which generally involve the 
0580 wounded nucleons. In a string picture, the wounded nucleons become strings 
0581 excited along the beam direction. At high energy, the excited strings
0582 are assumed to interact again like the ordinary nucleon-nucleon 
0583 collisions before they fragment. Unlike FRITIOF model, we allow 
0584 an excited string to be de-excited within the kinematic limits 
0585 in the subsequent collisions.
0586 The binary approximation can also be applied to rare hard 
0587 scatterings which involve only independent pairs of partons. The
0588 probability for a given parton to suffer multiple high $P_T$
0589 scatterings is small and is not implemented in the current
0590 version of the program. We employ a three-parameter Wood-Saxon
0591 nuclear density to compute the number of binary collisions
0592 at a given impact parameter.
0593 
0594         For each one of these binary collisions, we use 
0595 the eikonal formalism as given in Section~\ref{sec:jet1}
0596 to  determine the probability of collision, elastic or 
0597 inelastic and the number of jets it produces.  After simulation
0598 of hard processes, the energy of the scattered partons is 
0599 subtracted from the nucleon and the remaining energy is used 
0600 in the soft interaction as in ordinary soft nucleon-nucleon 
0601 collisions. The excited string system minus the scattered 
0602 partons suffers further collisions according to the geometrical
0603 probability.
0604 
0605         We assign one of the two scattered partons per hard 
0606 scattering to each participating nucleon or they may form an 
0607 independent single ($q-\bar{q}$) string system.  After all 
0608 binary collisions are processed, we then connect the scattered 
0609 partons in the associated nucleons with the corresponding 
0610 valence quarks and diquarks to form string systems. The strings 
0611 are then fragmented into particles.
0612 
0613 \subsection{Nuclear shadowing effect}
0614 
0615         One of the most important nuclear effects in relativistic
0616 heavy ion collisions is the nuclear modification of parton 
0617 structure functions. It has been observed\cite{shadow1} 
0618 that the effective number of quarks and antiquarks in a 
0619 nucleus is depleted in the low region of $x$. Though gluon
0620 shadowing has not been studied experimentally, we  will assume
0621 that the shadowing effect for gluons and quarks is the same. 
0622 We also neglect the QCD evolution of the shadowing effect in the
0623 current version.  There is no experimental evidence for significant 
0624 $Q$ dependence of the nuclear effect on the quark structure functions.  
0625 However, theoretical study\cite{eskola93} shows that gluon shadowing may 
0626 evolve with $Q$.
0627 
0628         At this stage, the experimental data unfortunately 
0629 can not fully determine the $A$ dependence of the shadowing. 
0630 We will follow the $A$ dependence as proposed in 
0631 Ref.\cite{shadow2} and use the following parametrization,
0632 \begin{eqnarray}
0633         R_A(x)&\equiv&\frac{f_{a/A}(x)}{Af_{a/N}(x)} \nonumber\\
0634                 &=&1+1.19\ln^{1/6}\!A\,[x^3-1.5(x_0+x_L)x^2+3x_0x_Lx]\nonumber\\
0635                 & &-[\alpha_A-\frac{1.08(A^{1/3}-1)}{\ln(A+1)}\sqrt{x}]
0636                         e^{-x^2/x_0^2},\label{eq:shadow}\\
0637         \alpha_A&=&0.1(A^{1/3}-1),\label{eq:shadow1}
0638 \end{eqnarray}
0639 where $x_0=0.1$ and $x_L=0.7$. The term proportional to $\alpha_A$ in 
0640 Eq.~\ref{eq:shadow} determines the shadowing for $x<x_0$ with the 
0641 most important nuclear dependence, while the rest gives the overall 
0642 nuclear effect on the structure function in $x>x_0$ with some very slow 
0643 $A$ dependence. This parametrization can fit the overall nuclear 
0644 effect on the quark structure function in the small and medium 
0645 $x$ region\cite{hijing}. 
0646 
0647 
0648         To take into account of the impact parameter dependence, 
0649 we assume that the shadowing effect $\alpha_A$ is proportional 
0650 to the longitudinal dimension of the nucleus along the straight 
0651 trajectory of the interacting nucleons. We thus parametrize
0652 $\alpha_A$ in Eq.~\ref{eq:shadow} as
0653 \begin{equation}
0654         \alpha_A(r)=0.1(A^{1/3}-1)\frac{4}{3}\sqrt{1-r^2/R_A^2},
0655                         \label{eq:rshadow}
0656 \end{equation}
0657 where $r$ is the transverse distance of the interacting 
0658 nucleon from its nucleus center and $R_A$ is the radius of the 
0659 nucleus. For a sharp sphere nucleus with overlap function
0660 $T_A(r)=(3A/2\pi R_A^2)\sqrt{1-r^2/R_A^2}$, the averaged 
0661 $\alpha_A(r)$ is $\alpha_A=\pi\int_0^{R_A^2}dr^2 T_A(r)\alpha_A(r)/A$.
0662 Because the rest of Eq.~\ref{eq:shadow} has a very slow $A$ 
0663 dependence, we will only consider the impact parameter dependence
0664 of $\alpha_A$. After all, most of the jet productions occur in 
0665 the small $x$ region where only shadowing is important.
0666 
0667         To simplify the calculation during the Monte Carlo 
0668 simulation, we can decompose $R_A(x,r)$ into two parts,
0669 \begin{equation}
0670         R_A(x,r)\equiv R_A^0(x)-\alpha_A(r)R_A^s(x),
0671 \end{equation}
0672 where $\alpha_A(r)R_A^s(x)$ is the term proportional to $\alpha_A(r)$ 
0673 in Eq.~\ref{eq:shadow} with  $\alpha_A(r)$ given in Eq.~\ref{eq:rshadow} 
0674 and $R_A^0(x)$ is the rest of $R_A(x,r)$. Both $R_A^0(x)$ and $R_A^s(x)$ 
0675 are now independent of $r$. The effective jet production cross section
0676 of a binary nucleon-nucleon  interaction in $A+B$ nuclear collisions 
0677 is then,
0678 \begin{equation}
0679         \sigma_{jet}^{eff}(r_A,r_B)=\sigma_{jet}^0-\alpha_A(r_A)\sigma_{jet}^A
0680                 -\alpha_B(r_B)\sigma_{jet}^B
0681                 +\alpha_A(r_A)\alpha_B(r_B)\sigma_{jet}^{AB},\label{eq:sjetab}
0682 \end{equation}
0683 where $\sigma_{jet}^0$, $\sigma_{jet}^A$, $\sigma_{jet}^B$ and
0684 $\sigma_{jet}^{AB}$ can be calculated through Eq.~\ref{eq:sjet1} by 
0685 multiplying \\
0686 $f_a(x_1,P_T^2)f_b(x_2,P_T^2)$ in the integrand with 
0687 $R_A^0(x_1)R_B^0(x_2)$, $R_A^s(x_1)R_B^0(x_2)$, $R_A^0(x_1)R_B^s(x_2)$ and 
0688 $R_A^s(x_1)R_B^s(x_2)$ respectively. With calculated values of
0689 $\sigma_{jet}^0$, $\sigma_{jet}^A$, $\sigma_{jet}^B$ and $\sigma_{jet}^{AB}$,
0690 we will know the effective jet cross section
0691 $\sigma_{jet}^{eff}$ for any binary nucleon-nucleon collision.
0692 
0693 
0694 
0695 \subsection{Final state parton interaction}
0696 
0697 
0698 
0699         Another important nuclear effect on the jet 
0700 production in heavy ion collisions is the final state 
0701 integration. In  high energy heavy ion collisions, a dense
0702 hadronic or partonic matter must be produced in the central 
0703 region. Because this matter can extend over a transverse 
0704 dimension of at least $R_A$, jets with large $P_T$ from 
0705 hard scatterings have to traverse this hot environment. For 
0706 the purpose of studying the property of the dense matter 
0707 created during the nucleus-nucleus collisions, it is 
0708 important to investigate the interaction of jets with the 
0709 matter and the energy loss they suffer during their
0710 journey out. It is estimated\cite{gyu92,dedx} that the gluon 
0711 bremsstrahlung induced by soft interaction dominate the 
0712 energy loss mechanism.
0713 
0714         We model the induced radiation in HIJING via a simple
0715 collinear gluon splitting scheme with given energy loss $dE/dz$.
0716 The energy loss for gluon jets is twice that of quark jets\cite{dedx}.
0717 We assume that interaction only occur with the locally comoving
0718 matter in the transverse direction. The interaction points are
0719 determined via a probability
0720 \begin{equation}
0721         dP=\frac{d\ell}{\lambda_s}e^{-\ell/\lambda_s},
0722 \end{equation}
0723 with given mean free path $\lambda_s$, where $\ell$ is the 
0724 distance the jet has traveled after its last interaction. 
0725 The induced radiation is simulated by transferring a part of
0726 the jet energy $\Delta E(\ell)=\ell dE/z$ as a gluon kink to
0727 the other string which the jet interacts with. We continue 
0728 the procedure until the jet is out of the whole excited system 
0729 or when the jet energy is smaller than a cutoff below which 
0730 a jet can not loss energy any more. We take this cutoff as 
0731 the same as the cutoff $P_0$ for jet production. To determine 
0732 how many and which excited strings could interact with the 
0733 jet, we also have to assume a cross section of jet interaction so that
0734 excited strings within a cylinder of radius $r_s$ along the jet 
0735 direction could interact with the jet. $\lambda_s$
0736 should be related to $r_s$ via the density of the system of excited 
0737 strings. We simply take them as two parameters in our model.
0738 
0739           
0740 \section{Program Description}
0741 
0742 
0743         HIJING 1.0, written in  FORTRAN 77 is a Monte Carlo 
0744 simulation package for parton and particle production 
0745 in high energy hadron-hadron, hadron-nucleus,
0746 and nucleus-nucleus collisions. It consists of subroutines for 
0747 physics simulation and common blocks for parameters and event
0748 records. Users have to provide their own main program where desired
0749 parameters and event type are specified, and simulated events
0750 can be studied. HIJING 1.0 uses PYTHIA 5.3 to generate kinetic
0751 variables for each hard scattering and JETSET 7.2 for jet
0752 fragmentation. Therefore, HIJING 1.0 uses the same particle 
0753 flavor code (included in the appendix) 
0754 as JETSET 7.2 and PYTHIA 5.3. Users can also 
0755 obtain more flexibility by using subroutines in JETSET 7.2 and 
0756 changing the values of parameters in JETSET 7.2 and PYTHIA 5.3 
0757 therein. We refer users to the original literature\cite{pythia,jetset} 
0758 for the documentations of JETSET 7.2 and PYTHIA 5.3.
0759 For many users, however, subroutines, parameters and event
0760 information in HIJING 1.0 alone will be enough for studying
0761 most of the event types and the physics therein. To save compiling 
0762 time and to meet some specific needs of HIJING 1.0, PYTHIA 5.3 has 
0763 been modified and together with JETSET 7.2 is renamed as HIPYSET. 
0764 Therefore, one should link the main program with HIJING and HIPYSET.
0765 
0766         In this program, implicit integer numbers are assumed for 
0767 variables beginning with letters I--M, while the implicit real numbers
0768 are assumed for variables beginning with letters A--H and O--Z. 
0769 
0770 \subsection{Random numbers}
0771 
0772         Random numbers in HIJING is obtained by calling the
0773 VAX VMS system function RAN(NSEED). On SPARCstation, one has to
0774 link the program with {\tt -xl} flag in order to compile the program.
0775 We have not checked the portability of this function on machines
0776 with other operating systems. Whenever one encounters problem with
0777 this (pseudo) random number generator on different machines other
0778 than VAX and SPARCstation, one should replace this function by
0779 another random number generator.
0780 
0781         To start a new sequence of random numbers, one should give
0782 a new large odd integer value to variable NSEED in 
0783 COMMON/RANSEED/NSEED.
0784 
0785 
0786 \subsection{Main subroutines}
0787 
0788         After supplying the desired parameters, the first subroutine a
0789 user has to call is HIJSET. Then subroutine HIJING can be called to
0790 simulate the specified events.
0791 
0792 \begin{description}
0793 \itemsep=-4.0pt
0794 \item{}SUBROUTINE  HIJSET (EFRM, FRAME, PROJ, TARG, IAP, IZP, IAT, IZT)
0795 \item{}Purpose: to initialize HIJING for specified event type, collision
0796                 frame and energy. 
0797 \item{}EFRM: colliding energy (GeV) per nucleon in the frame specified 
0798                 by FRAME.
0799 \item{}FRAME: character variable to specify the frame of the collision.
0800         \vspace{-12.0pt}
0801         \begin{description}
0802         \itemsep=-4.0pt
0803                 \item{}='CMS': nucleon-nucleon center of mass frame, 
0804                         with projectile momentum in $+z$ direction and 
0805                         target momentum in $-z$ direction.
0806                 \item{}='LAB': laboratory frame of the fixed target with
0807                         projectile momentum in $+z$ direction.
0808         \end{description}
0809         \vspace{-4.0pt}
0810 \item{}PROJ, TARG: character variables of projectile and target particles.
0811         \vspace{-12.0pt}
0812         \begin{description}
0813         \itemsep=-4.0pt
0814                 \item{}='P': proton.
0815                 \item{}='PBAR': anti-proton.
0816                 \item{}='N': neutron.
0817                 \item{}='NBAR': anti-neutron.
0818                 \item{}='PI$+$': $\pi^+$.
0819                 \item{}='PI$-$': $\pi^-$.
0820                 \item{}='A': nucleus.
0821         \end{description}
0822         \hspace{-4.0pt}
0823 \item{}IAP, IAT: mass number of the projectile and target nucleus. Set
0824                 to 1 for hadrons.
0825 \item{}IZP, IZT: charge number of the projectile and target nucleus, for
0826                 hadrons it is the charge number of that hadron (=1, 0, $-1$).
0827 \end{description}
0828 
0829 \begin{description}
0830 \itemsep=-4.0pt
0831 \item{}SUBROUTINE  HIJING (FRAME, BMIN, BMAX)
0832 \item{}Purpose: to generate a complete event as specified by subroutine HIJSET
0833                 and the given parameters as will be described below.
0834                 This is the main routine which can be called (many times) 
0835                 only after HIJSET has been called once. 
0836 \item{}FRAME: character variable to specify the frame of the collision
0837                 as given in the HIJSET call.
0838 \item{}BMIN, BMAX: low and up limits (fm) between which the impact
0839                 parameter squared $b^2$ is uniformly distributed 
0840                 for $pA$ and
0841                 $AB$ collisions. For hadron-hadron collisions, both are set
0842                 to zero and the events 
0843                 are automatically averaged over all impact parameters.
0844 \end{description} 
0845 
0846 
0847 \subsection{Common blocks for event information}
0848 
0849         There are mainly three common blocks which provide users with
0850 important information of the generated events. Common block HIMAIN1
0851 contains global information of the events and common block HIMAIN2
0852 of the produced particles. The information of produced partons are
0853 stored in common blocks HIJJET1, HIJJET2, HISTRNG.
0854 
0855 \begin{description}
0856 \itemsep=-4.0pt
0857 \item{}COMMON/HIMAIN1/NATT, EATT, JATT, NT, NP, N0, N01, N10, N11
0858 \item{}Purpose: to give the overall information of the generated event.
0859 \item{}NATT: total number of produced stable and undecayed particles of 
0860                 the current event. 
0861 \item{}EATT: the total energy of the produced particles in c.m. frame
0862                 of the collision to check energy conservation.
0863 \item{}JATT: the total number of hard scatterings in the current event.
0864 \item{}NP, NT: the number of participant projectile and target nucleons
0865                 in the current event.
0866 \item{}N0, N01, N10, N11: number of $N$-$N$, $N$-$N_{wounded}$,
0867                 $N_{wounded}$-$N$, and
0868                 $N_{wounded}$-$N_{wounded}$ collisions in 
0869                 the current event ($N$, $N_{wounded}$ stand
0870                 for nucleon and wounded nucleon respectively).
0871 \end{description}
0872 
0873 \begin{description}
0874 \itemsep=-4.0pt
0875 \item{}COMMON /HIMAIN2/KATT(130000,4), PATT(130000,4)
0876 \item{}Purpose: to give information of produced stable and undecayed
0877                 particles. Parent particles which decayed are not included
0878                 here.
0879 \item{}KATT(I, 1): (I=1,$\cdots$,NATT) flavor codes (see appendix) of 
0880                 the produced particles.
0881 \item{}KATT(I, 2): (I=1,$\cdots$,NATT) status codes to identify the 
0882                 sources from which the particles come.
0883         \vspace{-12.0pt}
0884         \begin{description}
0885         \itemsep=-4.0pt
0886                 \item{}=0: projectile nucleon (or hadron) which has 
0887                         not interacted at all.
0888                 \item{}=1: projectile nucleon (or hadron) which 
0889                         only suffers an elastic collision.
0890                 \item{}=2: from a diffractive projectile nucleon (or hadron)
0891                         in a single diffractive interaction.
0892                 \item{}=3: from the fragmentation of a projectile string
0893                         system (including gluon jets).
0894                 \item{}=10 target nucleon (or hadron) which has not 
0895                         interacted at all.
0896                 \item{}=11: target nucleon (or hadron) which only 
0897                         suffers an elastic collision.
0898                 \item{}=12: from a diffractive target nucleon (or hadron)
0899                         in a single diffractive interaction.
0900                 \item{}=13: from the fragmentation of a target string 
0901                         system (including gluon jets).
0902                 \item{}=20: from scattered partons which form string
0903                         systems themselves.
0904                 \item{}=40: from direct production in the hard processes
0905                         ( currently, only direct photons are included).
0906         \end{description}
0907         \vspace{-4.0pt}
0908 \item{}KATT(I,3): (I=1,$\cdots$,NATT) line number of the parent particle.
0909                         For finally produced or directly produced (not from
0910                         the decay of another particle) particles, it is set
0911                         to 0 (The option to keep the information of all
0912                         particles including the decayed ones is IHPR2(21)=1).
0913 \item{}KATT(I,4): (I=1,$\cdots$,NATT) status number of the particle.
0914         \vspace{-12.0pt}
0915         \begin{description}
0916         \itemsep=-4.0pt
0917                \item{}=1: finally or directly produced particles.
0918                \item{}=11: particles which has already decayed.
0919         \end{description}
0920         \vspace{-4.0pt}
0921 \item{}PATT(I, 1-4): (I=1,$\cdots$,NATT) four-momentum ($p_x,p_y,p_z,E$) 
0922                 (GeV/$c$, GeV) of the produced particles.
0923 \end{description}
0924 
0925 \begin{description}
0926 \itemsep=-4.0pt
0927 \item{}COMMON/HIJJET1/NPJ(300), KFPJ(300,500), PJPX(300,500), PJPY(300,500),\\
0928 PJPZ(300,500), PJPE(300,500), PJPM(300,500), NTJ(300), KFTJ(300,500),\\
0929 PJTX(300,500), PJTY(300,500), PJTZ(300,500), PJTE(300,500), PJTM(300,500)
0930 \item{}Purpose: contains information about produced partons which are 
0931                 connected with the valence quarks and diquarks of 
0932                 projectile or target nucleons (or hadron) to form 
0933                 string systems for fragmentation. The momentum and
0934                 energy of all produced partons are calculated in
0935                 the c.m. frame of the collision. IAP, IAT are the
0936                 numbers of nucleons in projectile and target nucleus 
0937                 respectively (IAP, IAT=1 for hadron projectile or target).
0938 \item{}NPJ(I): (I=1,$\cdots$,IAP) number of partons associated with projectile
0939                 nucleon I.
0940 \item{}KFPJ(I, J): (I=1,$\cdots$,IAP, J=1,$\cdots$,NPJ(I)) parton 
0941                 flavor code of the 
0942                 parton J associated with projectile nucleon I.
0943 \item{}PJPX(I, J), PJPY(I, J), PJPZ(I, J), PJPE(I, J), PJPM(I, J): the four
0944                 momentum and mass ($p_x,p_y,p_z,E,M$) 
0945                 (GeV/$c$, GeV, GeV/$c^2$) of parton J associated with 
0946                 the projectile nucleon I.
0947 \item{}NTJ(I): (I=1,$\cdots$,IAT) number of partons associated with 
0948                 target nucleon I.
0949 \item{}KFTJ(I, J): (I=1,$\cdots$,IAT, J=1,$\cdots$,NTJ(I)): parton 
0950                 flavor code of the  parton J associated with 
0951                 target nucleon I.
0952 \item{}PJTX(I, J), PJTY(I, J), PJTZ(I, J), PJTE(I, J), PJTM(I, J): the four
0953                 momentum and mass ($p_x,p_y,p_z,E,M$) 
0954                 (GeV/$c$, GeV, GeV/$c^2$) of parton J associated with
0955                 target nucleon I.
0956 \end{description}
0957 
0958 \begin{description}
0959 \itemsep=-4.0pt
0960 \item{}COMMON/HIJJET2/NSG, NJSG(900), IASG(900,3), K1SG(900,100),\\
0961 \hspace{-24pt}K2SG(900,100), PXSG(900,100), PYSG(900,100), PZSG(900,100), \\
0962 \hspace{-24pt}PESG(900,100), PMSG(900,100)
0963 \item{}Purpose: contains information about the produced partons which
0964                 will form string systems themselves without being 
0965                 connected to valence quarks and diquarks.
0966 \item{}NSG: the total number of such string systems.
0967 \item{}NJSG(I): (I=1,$\cdots$,NSG) number of partons in the string system I.
0968 \item{}IASG(I, 1), IASG(I, 2): to specify which projectile and target 
0969                 nucleons produce string system I.
0970 \item{}IASG(I, 3): to indicate whether the jets will be quenched (0)
0971                 or will not be quenched (1).
0972 \item{}K1SG(I, J): (J=1,$\cdots$,NJSG(I)) color flow information of parton J
0973                 in string system I (see JETSET 7.2 for detailed
0974                 explanation).
0975 \item{}K2SG(I, J): (J=1,$\cdots$,NJSG(I)) flavor code of parton J in string
0976                 system I.
0977 \item{}PXSG(I, J), PYSG(I, J), PZSG(I, J), PESG(I, J), PMSG(I, J): four
0978                 momentum and mass ($p_x,p_y,p_z,E,M$) 
0979                 ( GeV/$c$, GeV, GeV/$c^2$) of parton J in string system I. 
0980 \end{description}
0981 
0982 
0983 \begin{description}
0984 \itemsep=-4.0pt
0985 \item{}COMMON/HISTRNG/NFP(300,15), PP(300,15), NFT(300,15), PT(300,15)
0986 \item{}Purpose: contains information about the projectile and 
0987         target nucleons (hadron) and the corresponding constituent 
0988         quarks, diquarks. IAP, IAT are the numbers of nucleons in 
0989         projectile and target nucleus respectively (IAP, IAT=1 
0990         for hadron projectile or target).
0991 \item{}NFP(I, 1): (I=1,$\cdots$,IAP) flavor code of the valence quark in 
0992                 projectile nucleon (hadron) I.
0993 \item{}NFP(I, 2): flavor code of diquark in projectile nucleon (anti-quark
0994                 in projectile meson) I.
0995 \item{}NFP(I, 3): present flavor code of the projectile nucleon (hadron) I
0996                 ( a nucleon or meson can be excited to its vector resonance).
0997 \item{}NFP(I, 4): original flavor code of projectile nucleon (hadron) I.
0998 \item{}NFP(I, 5): collision status of projectile nucleon (hadron) I.
0999         \vspace{-12.0pt}
1000         \begin{description}
1001         \itemsep=-4.0pt
1002                 \item{}=0: suffered no collision.
1003                 \item{}=1: suffered an elastic collision.
1004                 \item{}=2: being the diffractive one in a single-diffractive
1005                         collision.
1006                 \item{}=3: became an excited string after an inelastic
1007                         collision.
1008         \end{description}
1009         \vspace{-4.0pt}
1010 \item{}NFP(I, 6): the total number of hard scatterings associated with 
1011                 projectile nucleon (hadron) I. If NFP(I,6)$<0$, it can not 
1012                         produce jets any more due to energy conservation.
1013 \item{}NFP(I, 10): to indicate whether the valence quarks or diquarks 
1014                 (anti-quarks) in projectile nucleon (hadron) I 
1015                 suffered a hard scattering,
1016         \vspace{-12.0pt}
1017         \begin{description}
1018         \itemsep=-4.0pt
1019                 \item{}=0: has not  suffered a hard scattering.
1020                 \item{}=1: suffered one or more hard scatterings in
1021                         current binary nucleon-nucleon collision.
1022                 \item{}=$-1$: suffered one or more hard scatterings in
1023                         previous binary nucleon-nucleon collisions.
1024         \end{description}
1025         \vspace{-4.0pt}
1026 \item{}NFP(I, 11): total number of interactions projectile nucleon (hadron)
1027                 I  has suffered so far.
1028 \item{}PP(I, 1), PP(I, 2), PP(I, 3), PP(I, 4), PP(I, 5): four momentum and
1029                 the invariant mass ($p_x,p_y,p_z,E,M$) 
1030                 (GeV/$c$, GeV, GeV/$c^2$) of projectile nucleon (hadron) I.
1031 \item{}PP(I, 6), PP(I, 7): transverse momentum ($p_x,p_y$) (GeV/$c$) of the 
1032                 valence quark in projectile nucleon (hadron) I.
1033 \item{}PP(I, 8), PP(I, 9): transverse momentum ($p_x,p_y$) (GeV/$c$) of the 
1034                 diquark (anti-quark) in projectile nucleon (hadron) I.
1035 \item{}PP(I, 10), PP(I, 11), PP(I, 12): three momentum ($p_x,p_y,p_z$) 
1036                 (GeV/$c$) transferred to the quark or diquark (anti-quark)
1037                 in projectile nucleon (hadron) I from the last hard 
1038                 scattering.
1039 \item{}PP(I, 14): mass (GeV/$c^2$) of the quark in projectile nucleon
1040                 (hadron) I.
1041 \item{}PP(I, 15): mass of the diquark (anti-quark) in projectile
1042                 nucleon (hadron) I.
1043 \item{}NFT(I, 1--15), PT(I,1--15): give the same 
1044                 information for the target nucleons (hadron) and the 
1045                 corresponding quarks and diquarks (anti-quarks) as for
1046                 the projectile nucleons.
1047 \end{description}
1048 
1049 
1050 
1051 
1052 \subsection{Options and parameters}
1053 
1054         
1055         The following common block is for input parameters for HIJING
1056 which are used mainly for specifying event options and changing the
1057 default parameters. It also contains some extra event information.
1058 The default values of the parameters are given by D. Some parameters
1059 are simply used to redefine the parameters in JETSET 7.2 and PYTHIA 5.3.
1060 Users have to find the detailed explanations in JETSET and PYTHIA
1061 documentations.
1062 
1063 \begin{description}
1064 \itemsep=-4.0pt
1065 \item{}COMMON/HIPARNT/HIPR1(100), IHPR2(50), HINT1(100), IHNT2(50)
1066 \item{}Purpose: contains input parameters (HIPR1, IHPR2) for event options 
1067                 and some extra information (HINT1, IHNT2) of current event.
1068 \item{}HIPR1(1): (D=1.5 GeV/$c^2$) minimum value for the invariant mass of 
1069                 the excited string system in a hadron-hadron interaction.
1070 \item{}HIPR1(2): (D=0.35 GeV) width of the Gaussian $P_T$ distribution of 
1071                 produced hadron in Lund string fragmentation
1072                 (PARJ(21) in JETSET 7.2).
1073 \item{}HIPR1(3), HIPR1(4): (D=0.5, 0.9 GeV$^{-2}$) give the $a$ and $b$ 
1074                 parameters of the symmetric Lund fragmentation function 
1075                 (PARJ(41), PARJ(42) in JETSET 7.2).
1076 \item{}HIPR1(5): (D=2.0 GeV/$c^2$) invariant mass cut-off for the dipole 
1077                 radiation of a string system below which soft gluon
1078                 radiations are terminated.
1079 \item{}HIPR1(6): (D=0.1) the depth of shadowing of structure functions 
1080                 at $x=0$ as defined in Eq.~\ref{eq:shadow1}:
1081                 $\alpha_A=\mbox{HIPR1(6)}\times(A^{1/3}-1)$.
1082 \item{}HIPR1(7): not used
1083 \item{}HIPR1(8): (D=2.0 GeV/$c$) minimum $P_T$ transfer in hard or 
1084                 semihard scatterings.
1085 \item{}HIPR1(9): (D=$-1.0$ GeV/$c$) maximum $P_T$ transfer in hard or 
1086                 semihard scatterings. If negative, the limit is set
1087                 by the colliding energy.
1088 \item{}HIPR1(10): (D=$-2.25$ GeV/$c$) specifies the value of $P_T$ for
1089                 each triggered hard scattering generated per event
1090                 (see Section \ref{sec:jet2}). If HIPR1(10) is negative, 
1091                 its absolute value gives the low limit of the 
1092                 $P_T$ of the triggered jets.  
1093 \item{}HIPR1(11): (D=2.0 GeV/$c$) minimum $P_T$ of a jet which will interact 
1094                 with excited nuclear matter. When the $P_T$ of a jet 
1095                 is smaller than HIPR1(11) it will stop interacting further.
1096 \item{}HIPR1(12): (D=1.0 fm) transverse distance between a traversing jet 
1097                 and an excited nucleon (string system) below which they 
1098                 will interact and the jet will lose energy and momentum 
1099                 to that string system.
1100 \item{}HIPR1(13): (D=1.0 fm) the mean free path of a jet when it goes 
1101                 through the excited nuclear matter.
1102 \item{}HIPR1(14): (D=2.0 GeV/fm) the energy loss $dE/dz$ of a gluon 
1103                 jet inside the excited nuclear matter. The energy loss
1104                 for a quark jet is half of the energy loss of a gluon.
1105 \item{}HIPR1(15): (D=0.2 GeV/$c$) the scale $\Lambda$ in the 
1106                 calculation of $\alpha_s$.
1107 \item{}HIPR1(16): (D=2.0 GeV/$c$) the initial scale $Q_0$ for the 
1108                 evolution of the structure functions.
1109 \item{}HIPR1(17): (D=2.0) $K$ factor for the differential jet cross 
1110                 sections in the lowest order pQCD calculation.
1111 \item{}HIPR1(18): not used
1112 \item{}HIPR1(19), HIPR1(20): (D=0.1, 1.4 GeV/$c$) parameters in the 
1113                 distribution for the $P_T$ kick from soft interactions 
1114                 (see Eq.~\ref{eq:kick}),
1115                 $1/[(\mbox{HIPR1(19)}^2+P_T^2)(\mbox{HIPR1(20)}^2+P_T^2)]$.
1116 \item{}HIPR1(21): (D=1.6 GeV/$c$) the maximum $P_T$ for soft interactions,
1117                 beyond which a Gaussian distribution as specified by 
1118                 HIPR1(2) will be used.
1119 \item{}HIPR1(22): (D=2.0 GeV/$c$) the scale in the form factor to suppress 
1120                 the $P_T$ transfer to diquarks in hard scatterings,
1121 \item{}HIPR1(23)--HIPR1(28): not used.
1122 \item{}HIPR1(29): (D=0.4 fm) the minimum distance between two nucleons
1123                 inside a nucleus when the coordinates of the nucleons 
1124                 inside a nucleus are initialized.
1125 \item{}HIPR1(30): (D=2$\times$HIPR1(31)=57.0 mb) the inclusive cross 
1126                 section $\sigma_{soft}$ for soft interactions. The default
1127                 value $\sigma_{soft}=2\sigma_0$ is used to ensure the 
1128                 geometrical scaling of $pp$ interaction cross sections 
1129                 at low energies.
1130 \item{}HIPR1(31): (D=28.5 mb) the cross section $\sigma_0$ which 
1131                 characterizes the geometrical size of a nucleon
1132                 ($\pi b_0^2=\sigma_0$, see Eq.~\ref{eq:over2}). 
1133                 The default value is only for high-energy 
1134                 limit ($\sqrt{s}>200$ GeV). At lower energies, a slight
1135                 decrease which depends on energy is parametrized in the 
1136                 program. The default values of the two parameters 
1137                 HIPR1(30), HIPR1(31) are only for $NN$ type interactions. 
1138                 For other kinds of projectile or target hadrons, users 
1139                 should change these values so that correct inelastic 
1140                 and total cross sections (HINT1(12), HINT1(13)) are
1141                 obtained by the program. 
1142 \item{}HIPR1(32): (D=3.90) parameter $\mu_0$ in Eq.~\ref{eq:over2} for
1143                 the scaled eikonal function.
1144 \item{}HIPR1(33): fractional cross section of single-diffractive
1145                 interaction as parametrized in Ref.~\cite{goulianos}.
1146 \item{}HIPR1(34): maximum radial coordinate for projectile nucleons 
1147                 to be given by the initialization program HIJSET.
1148 \item{}HIPR1(35): maximum radial coordinate for target nucleons 
1149                 to be given by the initialization program HIJSET.
1150 \item{}HIPR1(36)-HIPR1(39): not used.
1151 \item{}HIPR1(40): (D=3.141592654) value of $\pi$.
1152 \item{}HIPR1(41)--HIPR1(42): not used.
1153 \item{}HIPR1(43): (D=0.01) fractional energy error relative to the 
1154                 colliding energy permitted per nucleon-nucleon collision.
1155 \item{}HIPR1(44), HIPR1(45), HIPR1(46): (D=1.5, 0.1 GeV, 0.25) parameters
1156                 $\alpha$, $c$ and $\beta$ in the valence quark 
1157                 distributions for soft string excitation, 
1158                 $(1-x)^{\alpha}/(x^2+c^2/s)^{\beta}$ for baryons,
1159                 $1/{(x^2+c^2/s)[(1-x)^2+c^2/s)]}^{\beta}$ for mesons.
1160 \item{}HIPR1(47), HIPR1(48): (D=0.0, 0.5) parameters $\alpha$ and $\beta$
1161                 in valence quark distribution, 
1162                 $(1-x)^{\alpha}/(x^2+c^2/s)^{\beta}$, for the 
1163                 disassociated excitation in a single diffractive collision.
1164 \item{}HIPR1(49)--HIPR1(100): not used.
1165 \item{}IHPR2(1): (D=1) switch for dipole-approximated QCD radiation 
1166                 of the string system in soft interactions. 
1167 \item{}IHPR2(2): (D=3) option for initial and final state radiation in 
1168                 the hard scattering.
1169         \vspace{-12.0pt}
1170         \begin{description}
1171         \itemsep=-4.0pt
1172                 \item{}=0: both initial and final radiation are off.
1173                 \item{}=1: initial radiation on and final radiation off.
1174                 \item{}=2: initial radiation off and final radiation on.
1175                 \item{}=3: both initial and final radiation are on.
1176         \end{description}
1177         \vspace{-4.0pt}
1178 \item{}IHPR2(3): (D=0) switch for triggered hard scattering with specified
1179                 $P_T\geq$HIPR1(10).
1180         \vspace{-12.0pt}
1181         \begin{description}
1182         \itemsep=-4.0pt
1183                 \item{}=0: no triggered jet production. 
1184                 \item{}=1: ordinary hard processes.
1185                 \item{}=2: only direct photon production.
1186         \end{description}
1187         \vspace{-4.0pt}
1188 \item{}IHPR2(4): (D=1) switch for jet quenching in the excited 
1189                 nuclear matter.
1190 \item{}IHPR2(5): (D=1) switch for the $P_T$ kick due to soft interactions. 
1191 \item{}IHPR2(6): (D=1) switch for the nuclear effect on the parton 
1192                 distribution function such as shadowing.
1193 \item{}IHPR2(7): (D=1) selection of Duke-Owens set (1 or 2) of parametrization 
1194                 of nucleon structure functions.
1195 \item{}IHPR2(8): (D=10) maximum number of hard scatterings per 
1196                 nucleon-nucleon interaction. When IHPR2(8)=0, jet
1197                 production will be turned off. When IHPR2(8)$<0$, the
1198                 number of jet production will be fixed at its absolute
1199                 value for each NN collision.
1200 \item{}IHPR2(9): (D=0) switch to guarantee at least one pair of minijets
1201                 production per event ($pp$, $pA$ or $AB$).
1202 \item{}IHPR2(10): (D=0) option to print warning messages about errors that 
1203                 might happen. When a fatal error happens the current event 
1204                 will be abandoned and a new one is generated.
1205 \item{}IHPR2(11): (D=1) choice of baryon production model.
1206         \vspace{-12.0pt}
1207         \begin{description}
1208         \itemsep=-4.0pt
1209                 \item{}=0: no baryon-antibaryon pair production, initial 
1210                         diquark treated as a unit.
1211                 \item{}=1: diquark-antidiquark pair production allowed, 
1212                         initial diquark treated as a unit.
1213                 \item{}=2: diquark-antidiquark pair production allowed, 
1214                         with the possibility for diquark to split 
1215                         according to the ``popcorn'' scheme (see the 
1216                         documentation of JETSET 7.2).
1217         \end{description}
1218         \vspace{-4.0pt}
1219 \item{}IHPR2(12): (D=1) option to turn off the automatic decay of the
1220                  following particles: 
1221                 $\pi^0$, $K^0_S$, $D^{\pm}$, $\Lambda$, $\Sigma^{\pm}$.
1222 \item{}IHPR2(13): (D=1) option to turn on single diffractive reactions.
1223 \item{}IHPR2(14): (D=1) option to turn on elastic scattering.
1224 \item{}IHPR2(15)--IHPR2(18): not used.
1225 \item{}IHPR2(19): (D=1) option to turn on initial state soft interaction.
1226 \item{}IHPR2(20): (D=1) switch for the final fragmentation.
1227 \item{}IHPR2(21): (D=0) option to keep the information of all particles 
1228                   including those which have decayed and the decay history
1229                   in the common block HIMAIN2. The line number of the parent 
1230                   particle is KATT(I,3). The status of a partcile, 
1231                   whether it is a finally produced particle (KATT(I,4)=1) 
1232                   or a decayed particle (KATT(I,4)=11) is also kept.
1233 \item{}IHPR2(22)-IHPR2(50): not used.
1234 \item{}HINT1(1): (GeV) colliding energy in the c.m. frame of nucleon-nucleon
1235                 collisions.
1236 \item{}HINT1(2): Lorentz transformation variable $\beta$ from laboratory
1237                 to c.m.  frame of nucleon nucleon collisions.
1238 \item{}HINT1(3): rapidity $y_{cm}$ of the c.m. frame 
1239                 $\beta=\tanh y_{cm}$.
1240 \item{}HINT1(4): rapidity of projectile nucleons (hadron) $y_{proj}$.
1241 \item{}HINT1(5): rapidity of target nucleons (hadron) $y_{targ}$.
1242 \item{}HINT1(6): (GeV) energy of the projectile nucleons (hadron) in the 
1243                 given frame.
1244 \item{}HINT1(7): (GeV) energy of the target nucleons (hadron) in the 
1245                 given frame.
1246 \item{}HINT1(8): (GeV) the rest mass of projectile particles.
1247 \item{}HINT1(9): (GeV) the rest mass of target particles.
1248 \item{}HINT1(10): (mb) the averaged cross section for jet production
1249                 per nucleon-nucleon collisions,
1250                 $\int d^2b\{1-\exp[-\sigma_{jet}T_N(b)]\}$.
1251 \item{}HINT1(11): (mb) the averaged inclusive cross section $\sigma_{jet}$
1252                 for jet production per nucleon-nucleon collisions.
1253 \item{}HINT1(12): (mb) the averaged inelastic cross section of 
1254                 nucleon-nucleon collisions.
1255 \item{}HINT1(13): (mb) the averaged total cross section of nucleon-nucleon
1256                 collisions.
1257 \item{}HINT1(14): (mb) the jet production cross section without nuclear
1258                 shadowing effect $\sigma_{jet}^0$ (see Eq.~\ref{eq:sjetab}).
1259 \item{}HINT1(15): (mb) the cross section $\sigma_{jet}^A$ to account for 
1260                 the projectile shadowing correction term in the jet cross 
1261                 section (see Eq.~\ref{eq:sjetab}).
1262 \item{}HINT1(16): (mb) the cross section $\sigma_{jet}^B$ to account for 
1263                 the target shadowing correction term in the jet cross 
1264                 section (see Eq.~\ref{eq:sjetab}).
1265 \item{}HINT1(17): (mb) the cross section $\sigma_{jet}^{AB}$ to account 
1266                 for the cross term of shadowing correction in the jet 
1267                 cross section (see Eq.~\ref{eq:sjetab}).
1268 \item{}HINT1(18): (mb) the effective cross section 
1269                 $\sigma_{jet}^{eff}(r_A,r_B)$ for jet production 
1270                 of the latest nucleon-nucleon collision which depends 
1271                 on the transverse coordinates of the colliding 
1272                 nucleons (see Eq.~\ref{eq:sjetab}).
1273 \item{}HINT1(19): (fm) the (absolute value of) impact parameter of the 
1274                 latest event.
1275 \item{}HINT1(20): (radians) the azimuthal angle $\phi$ of the impact
1276                 parameter vector in the transverse plane of the latest 
1277                 event.
1278 \item{}HINT1(21)--HINT1(25): the four momentum and mass ($p_x,p_y,p_z,E,M$)
1279                 (GeV/$c$, GeV, GeV/$c^2$) of the first scattered parton 
1280                 in the triggered hard scattering. This is before the final
1281                 state radiation but after the initial state radiation.
1282 \item{}HINT1(26)--HINT1(30): not used.
1283 \item{}HINT1(31)--HINT1(35): the four momentum and mass ($p_x,p_y,p_z,E,M$)
1284                 (GeV/$c$, GeV, GeV/$c^2$) of the second scattered parton 
1285                 in the triggered hard scattering. This is before the final
1286                 state radiation but after the initial state radiation.
1287 \item{}HINT1(46)--HINT1(40): not used.
1288 \item{}HINT1(41)--HINT1(45): the four momentum and mass ($p_x,p_y,p_z,E,M$)
1289                 (GeV/$c$, GeV, GeV/$c^2$) of the first scattered parton 
1290                 in the latest hard scattering of the latest event.
1291 \item{}HINT1(46): $P_T$ (GeV/$c$) of the first scattered parton in the 
1292                 latest hard scattering of the latest event.
1293 \item{}HINT1(47)--HINT1(50): not used.
1294 \item{}HINT1(51)--HINT1(55): the four momentum and mass ($p_x,p_y,p_z,E,M$)
1295                 (GeV/$c$, GeV, GeV/$c^2$) of the second scattered parton 
1296                 in the latest hard scattering of the latest event.
1297 \item{}HINT1(56): $P_T$ (GeV/$c$) of the second scattered parton in the 
1298                 latest hard scattering of the latest event.
1299 \item{}HINT1(57)--HINT1(58): not used.
1300 \item{}HINT1(59): (mb) the averaged cross section of the 
1301                 triggered jet production (with $P_T$ specified by HIPR1(10)
1302                 and with switch by IHPR2(3)) per nucleon-nucleon
1303                 collision,
1304                 $\int d^2b\{1-\exp[-\sigma_{jet}^{trig}T_N(b)]\}$
1305 \item{}HINT1(60): (mb) the averaged inclusive cross section of the 
1306                 triggered jet production $\sigma_{jet}^{trig}$
1307                 (with $P_T$ specified by 
1308                 HIPR1(10) and with switch by IHPR2(3)) per
1309                 nucleon-nucleon collision.
1310 \item{}HINT1(61): (mb) the triggered jet production cross section without
1311                 nuclear shadowing effect (similar to HINT1(14)).
1312 \item{}HINT1(62): (mb) the cross section to account for the projectile 
1313                 shadowing correction term in the triggered jet cross 
1314                 section (similar to HINT1(15)).
1315 \item{}HINT1(63): (mb) the cross section to account for the target 
1316                 shadowing correction term in the triggered jet cross 
1317                 section (similar to HINT1(16)).
1318 \item{}HINT1(64): (mb) the cross section to account for the cross
1319                 term of shadowing correction in the triggered jet 
1320                 cross section (similar to HINT1(17).
1321 \item{}HINT1(65): (mb) the inclusive cross section for latest triggered
1322                 jet production which depends on the transverse coordinates
1323                 of the colliding nucleons (similar to HINT1(18)).
1324 \item{}HINT1(67)--HINT1(71): not used.
1325 \item{}HINT1(72)--HINT1(75): three parameters for the Wood-Saxon
1326                 projectile nuclear distribution and the normalization
1327                 read from a table inside the program,
1328                 $\rho(r)=C[1+W(r/R_A)^2]/\{1+\exp[(r-R_A)/D]\}$,
1329                 $R_A$=HINT1(72), $D$=HINT1(73), $W$=HINT1(74), $C$=HINT1(75).
1330 \item{}HINT1(76)--HINT1(79): three parameters for the Wood-Saxon
1331                 projectile nuclear distribution and the normalization
1332                 read from a table inside the program,
1333                 $\rho(r)=C[1+W(r/R_A)^2]/\{1+\exp[(r-R_A)/D]\}$,
1334                 $R_A$=HINT1(76), $D$=HINT1(77), $W$=HINT1(78), $C$=HINT1(79).
1335 \item{}HINT1(80)--HINT1(100): the probability of $j=0-20$ number of hard
1336                 scatterings per nucleon-nucleon collisions.
1337 \item{}IHNT2(1): the mass number of the projectile nucleus (1 for a hadron).
1338 \item{}IHNT2(2): the charge number of the projectile nucleus. If the
1339                 projectile is a hadron, it gives the charge of the hadron.
1340 \item{}IHNT2(3): the mass number of the target nucleus (1 for a hadron).
1341 \item{}IHNT2(4): the charge number of the target nucleus. If the target 
1342                 is a hadron, it gives the charge of the hadron.
1343 \item{}IHNT2(5): the flavor code of the projectile hadron (0 for nucleus).
1344 \item{}IHNT2(6): the flavor code of the target hadron (0 for nucleus).
1345 \item{}IHNT2(7)--IHNT2(8): not used.
1346 \item{}IHNT2(9): the flavor code of the first scattered parton in the 
1347                 triggered hard scattering.
1348 \item{}IHNT2(10): the flavor code of the second scattered parton in the 
1349                 triggered hard scattering.
1350 \item{}IHNT2(11): the sequence number of the projectile nucleon in the 
1351                 latest nucleon-nucleon interaction of the latest event.
1352 \item{}IHNT2(12): the sequence number of the target nucleon in the latest 
1353                 nucleon-nucleon interaction of the latest event.
1354 \item{}IHNT2(13): status of the latest soft string excitation.
1355         \vspace{-12.0pt}
1356         \begin{description}
1357         \itemsep=-4.0pt
1358                 \item{}=1: double diffractive.
1359                 \item{}=2: single diffractive. 
1360                 \item{}=3: non-single diffractive.
1361         \end{description}
1362         \vspace{-4.0pt}
1363 \item{}IHNT2(14): the flavor code of the first scattered parton in the 
1364                 latest hard scattering of the latest event.
1365 \item{}IHNT2(15): the flavor code of the second scattered parton in the 
1366                 latest hard scattering of the latest event.
1367 \item{}IHNT2(16)--IHNT2(50): not used.
1368 
1369 \end{description}
1370 
1371 
1372 \subsection{Other physics routines}
1373 
1374         Inside HIJING main routines, calls have to be made to many other
1375 routines to carry out the specified simulations. We give here a brief
1376 description of some of those routines.
1377 
1378 \begin{description}
1379 \itemsep=-4.0pt
1380 \item{}SUBROUTINE HIJINI
1381 \item{}Purpose: to reset all relevant common blocks and variables and
1382         initialize the program for each event.
1383 \end{description}
1384 
1385 \begin{description}
1386 \itemsep=-4.0pt
1387 \item{}SUBROUTINE HIJCRS
1388 \item{}Purpose: to calculate cross sections of minijet production,
1389         cross section of the triggered processes, 
1390         elastic, inelastic and total cross section of nucleon-nucleon
1391         (or hadron) collisions within the eikonal formalism.
1392 \end{description}
1393 
1394 \begin{description}
1395 \itemsep=-4.0pt
1396 \item{}SUBROUTINE JETINI (I\_TYPE)
1397 \item{}Purpose: to initialize the program for generating hard scatterings
1398         as specified by the parameters and options.
1399 \end{description}
1400 
1401 \begin{description}
1402 \itemsep=-4.0pt
1403 \item{}SUBROUTINE HIJHRD (JP, JT, JOUT, JFLG, IOPJET0)
1404 \item{}Purpose: to simulate one hard scattering among the multiple jet
1405         production per nucleon-nucleon (hadron) collision and the 
1406         associated radiations by calling PYTHIA subroutines.
1407 \end{description}
1408 
1409 \begin{description}
1410 \itemsep=-4.0pt
1411 \item{}SUBROUTINE HARDJET (JP, JT, JFLG)
1412 \item{}Purpose: to simulate the triggered hard processes.
1413 \end{description}
1414 
1415 \begin{description}
1416 \itemsep=-4.0pt
1417 \item{}SUBROUTINE HIJSFT (JP, JT, JOUT, IERROR)
1418 \item{}Purpose: to generate the soft interaction for each binary
1419         nucleon-nucleon collision.
1420 \end{description}
1421 
1422 \begin{description}
1423 \itemsep=-4.0pt
1424 \item{}SUBROUTINE HIJSRT (JPJT, NPT)
1425 \item{}Purpose: to rearrange the gluon jets in a string system according
1426         to their rapidities.
1427 \end{description}
1428 
1429 \begin{description}
1430 \itemsep=-4.0pt
1431 \item{}SUBROUTINE QUENCH (JPJT, NTP)
1432 \item{}Purpose: to perform jet quenching by allowing final state 
1433         interaction of produced jet inside the excited strings. 
1434         The energy lost by the jets will be transferred to other
1435         string systems. 
1436 \end{description}
1437 
1438 \begin{description}
1439 \itemsep=-4.0pt
1440 \item{}SUBROUTINE HIJFRG (JTP, NTP, IERROR)
1441 \item{}Purpose: to arrange the produced partons together with the
1442         valence quarks and diquarks (anti-quarks) and LUEXEC subroutine in
1443         JETSET is called to perform the fragmentation for each string
1444         system.
1445 \end{description}
1446 
1447 \begin{description}
1448 \itemsep=-4.0pt
1449 \item{}SUBROUTINE ATTRAD (IERROR)
1450 \item{}Purpose: to perform soft radiations according to Lund dipole
1451         approximation.
1452 \end{description}
1453 
1454 \begin{description}
1455 \itemsep=-4.0pt
1456 \item{}SUBROUTINE ATTFLV (ID, IDQ, IDQQ)
1457 \item{}Purpose: to generate the flavor codes of the valence quark and
1458         diquark (anti-quark) inside a given nucleon (hadron).
1459 \end{description}
1460 
1461 \begin{description}
1462 \itemsep=-4.0pt
1463 \item{}SUBROUTINE HIJCSC (JP, JT)
1464 \item{}Purpose: to perform elastic scatterings and possible elastic
1465         nucleon-nucleon cascading.
1466 \end{description}
1467 
1468 \begin{description}
1469 \itemsep=-4.0pt
1470 \item{}SUBROUTINE HIJWDS (IA, IDH, XHIGH)
1471 \item{}Purpose: to set up a distribution function according to the
1472         three-parameter Wood-Saxon distribution to generate the
1473         coordinates of the nucleons inside the projectile or
1474         target nucleus.
1475 \end{description}
1476 
1477 \begin{description}
1478 \itemsep=-4.0pt
1479 \item{}FUNCTION  PROFILE (XB)
1480 \item{}Purpose: gives the overlap profile function of two colliding
1481         nuclei at given impact parameter XB. This can be used to
1482         weight the simulated events of uniformly distributed impact
1483         parameter and obtain the results of the minimum biased events.
1484 \end{description}
1485 
1486 \begin{description}
1487 \itemsep=-4.0pt
1488 \item{}SUBROUTINE HIBOOST
1489 \item{}Purpose: to transform the produced particles from c.m. frame
1490         to the laboratory frame.
1491 \end{description}
1492 
1493 \begin{description}
1494 \itemsep=-4.0pt
1495 \item{}BLOCK DATA HIDATA
1496 \item{}Purpose: to give the default values of the parameters and 
1497         options and initialize the event record common blocks.
1498 \end{description}
1499 
1500 \subsection{Other common blocks}
1501 
1502         There also other two common blocks which contain information
1503 users may find useful.
1504 
1505 \begin{description}
1506 \itemsep=-4.0pt
1507 \item{}COMMON/HIJJET4/NDR,IADR(900,2),KFDR(900),PDR(900,5)
1508 \item{}Purpose: contains information about directly produced particles
1509                 (currently only direct photons).
1510 \item{}NDR: total number of directly produced particles.
1511 \item{}IADR(I, 1), IADR(I, 2): the sequence numbers of projectile and
1512                 target nucleons which produce particle I during their
1513                 interaction.
1514 \item{}KFDR(I): the flavor code of directly produced particle I.
1515 \item{}PDR(I, 1,$\cdots$,5): four momentum and mass ($p_x,p_y,p_z,E,M$)
1516                 (GeV/c, GeV, GeV/$c^2$) of  particle I.
1517 \end{description}
1518 
1519 \begin{description}
1520 \itemsep=-4.0pt
1521 \item{}COMMON/HIJCRDN/YP(3,300),YT(3,300)
1522 \item{}Purpose: to specify the space coordinates of projectile and
1523                 target nucleons inside their parent nuclei.
1524 \item{}YP(1,$\cdots$,3, I): $x,y,z$ (fm) coordinates of the number 
1525                 I projectile nucleon relative to the center of its 
1526                 parent nucleus.
1527 \item{}YT(1,$\cdots$,3, I): $x,y,z$ (fm) coordinates of the number I target 
1528                 nucleon relative to the center of its parent nucleus.
1529 \end{description}
1530 
1531 \section{Instruction on How to Use the Program}
1532 
1533         HIJING program was designed for high energy $pp$, $pA$ and $AB$ 
1534 collisions. It is relatively easy to use with only two main
1535 subroutines and a few adjustable parameters. In this section we will 
1536 give three example programs for generating events of fixed impact
1537 parameter, minimum bias, and triggered hard processes. In all the
1538 cases, users should write their own main program with all the relevant
1539 common blocks included. To study the event, users may  have to call 
1540 some routines in JETSET. Therefore, knowledge of JETSET will be helpful.
1541 Two special routines of JETSET which users may frequently use are
1542 function LUCHGE(KF) to give three times the charge, and function
1543 ULMASS(KF) to give the mass for a particle/parton with flavor code
1544 KF.
1545 
1546 \subsection{Fixed impact parameter}
1547 
1548         For relativistic hadron-nucleus and heavy ion 
1549 collisions, events at fixed impact
1550 parameter especially central collisions with $b=0$ are most commonly
1551 studied. It is also the simplest simulation for HIJING. For $pp$
1552 collisions, one should always use zero impact parameter and HIJING
1553 will give the results averaged over the impact parameter. In the
1554 following example program, we generate 1000 central events of
1555 $Au+Au$ at $\sqrt{s}=200$ GeV/n and calculate the rapidity and
1556 transverse momentum distributions of produced charged particles. 
1557 The projectile and target nucleons in the beam directions which 
1558 have not suffered any interaction are not considered produced 
1559 particles. The output of the event-averaged rapidity and transverse 
1560 momentum distributions are plotted in Figs.1 and 2.
1561 
1562 {\tt
1563 \begin{tabbing}
1564 AAAAA\=AAA\=  \kill
1565         \> \>CHARACTER FRAME*8, PROJ*8, TARG*8 \\
1566 \>\>    DIMENSION DNDPT(50),DNDY(50)\\
1567 \>\>    COMMON/HIPARNT/HIPR1(100), IHPR2(50), HINT1(100), IHNT2(50) \\
1568 C....information of produced particles: \> \>\\
1569         \> \>COMMON/HIMAIN1/NATT, EATT, JATT, NT, NP, N0, N01, N10, N11 \\
1570         \> \>COMMON/HIMAIN2/KATT(130000,4), PATT(130000,4) \\
1571 C....information of produced partons: \> \> \\
1572 \> \>COMMON/HIJJET1/NPJ(300), KFPJ(300,500), PJPX(300,500), \\
1573      \>\&  \> PJPY(300,500), PJPZ(300,500), PJPE(300,500), PJPM(300,500),\\
1574      \>\&  \> NTJ(300), KFTJ(300,500), PJTX(300,500), PJTY(300,500),\\
1575      \>\&  \> PJTZ(300,500), PJTE(300,500), PJTM(300,500)\\
1576 \> \> COMMON/HIJJET2/NSG, NJSG(900), IASG(900,3), K1SG(900,100),\\
1577 \>\&\>K2SG(900,100), PXSG(900,100), PYSG(900,100), PZSG(900,100), \\
1578 \>\&\>PESG(900,100), PMSG(900,100) \\
1579 \> \> COMMON/HISTRNG/NFP(300,15), PP(300,15), NFT(300,15), PT(300,15) \\
1580 C....initialize HIJING for Au+Au collisions at c.m. energy of 200 GeV: \> \>\\
1581 \>\>    EFRM=200.0 \\
1582 \>\>    FRAME='CMS' \\
1583 \>\>    PROJ='A' \\
1584 \>\>    TARG='A' \\
1585 \>\>    IAP=197 \\
1586 \>\>    IZP=79 \\
1587 \>\>    IAT=197 \\
1588 \>\>    IZT=79 \\
1589 \>\>    CALL HIJSET (EFRM, FRAME, PROJ, TARG, IAP, IZP, IAT, IZT) \\
1590 C....generating 1000 central events:\>\> \\
1591 \>\>    N\_EVENT=1000 \\
1592 \>\>    BMIN=0.0 \\
1593 \>\>    BMAX=0.0 \\
1594 \>\>    DO 2000 J=1,N\_EVENT\\
1595 \>\>    \hspace{24pt}CALL HIJING (FRAME, BMIN, BMAX) \\
1596 C....calculate rapidity and transverse momentum distributions of \> \> \\
1597 C....produced charged particles: \>\> \\
1598 \>\>    \hspace{24pt}DO 1000 I=1,NATT \\
1599 C........\>\>exclude beam nucleons as produced particles: \\
1600 \>\>    \hspace{48pt}IF(KATT(I,2).EQ.0 .OR. KATT(I,2).EQ.10) GO TO 1000 \\
1601 C........\>\>select charged particles only: \\
1602 \>\>    \hspace{48pt}IF (LUCHGE(KATT(I,1)) .EQ. 0) GO TO 1000 \\
1603 \>\>    \hspace{48pt}PTR=SQRT(PATT(I,1)**2+PATT(I,2)**2)\\
1604 \>\>    \hspace{48pt}IF (PTR .GT. 10.0) GO TO 100\\
1605 \>\>    \hspace{48pt}IPT=PTR/0.2\\
1606 \>\>    \hspace{48pt}DNDPT(IPT)=DNDPT(IPT)+1.0/FLOAT(N\_EVENT)/0.2/2.0/PTR\\
1607 100\>\> \hspace{48pt}Y=0.5*LOG((PATT(I,4)+PATT(I,3))/(PATT(I,4)+PATT(I,3)))\\
1608 \>\>    \hspace{48pt}IF(ABS(Y) .GT. 10.0) GO GO 1000\\
1609 \>\>    \hspace{48pt}IY=ABS(Y)/0.2\\
1610 \>\>    \hspace{48pt}DNDY(IY)=DNDY(IY)+1.0/FLOAT(N\_EVENT)/0.2/2.0\\
1611 1000\>\>\hspace{24pt}CONTINUE \\
1612 2000\>\>CONTINUE \\
1613 C....print out the rapidity and transverse momentum distributions:\>\>\\
1614 \>\>    WRITE(*,*) (0.2*(K-1),DNDPT(K),DNDY(K),K=1,50)\\
1615 \>\>    STOP \\
1616 \>\>    END
1617 \end{tabbing}
1618                 }
1619 
1620 
1621 \subsection{Minimum bias events}
1622 
1623         Because of the diffused distribution of large nuclei, minimum
1624 bias events are dominated by those of large impact parameters with a
1625 long shoulder for small impact parameter events. 
1626 To effectively study minimum
1627 bias events, one can generate events uniformly between zero and
1628 the largest impact parameter $R_A+R_B$, and then weight the events by
1629 a Glauber probability,
1630 \begin{equation}
1631         \frac{1}{\sigma_{AB}}d^2b\{1-\exp[-\sigma_{in}T_{AB}(b)]\}
1632 \end{equation}
1633 where $\sigma_{in}$ is the inelastic cross section for $N$-$N$ collisions and
1634 $\sigma_{AB}$ is the total reaction cross section for $AB$ collisions
1635 integrated over all impact parameters. To obtain the Glauber distribution
1636 a routine named FUNCTION PROFILE(XB) has to be called.
1637 
1638         In the following main program, a range of impact parameters
1639 from 0 to $2R_A$ is divided into 100 intervals. For each fixed
1640 impact parameter, 10 events are generated for $Au+Au$ at $\sqrt{s}=200$ GeV/n. 
1641 Then $P_T$ distribution for charged pions is calculated for
1642 the minimum bias events.
1643 
1644 {\tt
1645 \begin{tabbing}
1646 AAAAA\=AAA\=  \kill
1647         \> \>CHARACTER FRAME*8, PROJ*8, TARG*8 \\
1648         \> \>COMMON/HIPARNT/HIPR1(100), IHPR2(50), HINT1(100), IHNT2(50) \\
1649         \> \>COMMON/HIMAIN1/NATT, EATT, JATT, NT, NP, N0, N01, N10, N11 \\
1650         \> \>COMMON/HIMAIN2/KATT(130000,4), PATT(130000,4) \\
1651         \> \>DIMENSION GB(101), XB(101), DNDP(50) \\
1652 C....initialize HIJING for Au+Au collisions at c.m. energy of 200 GeV: \> \>\\
1653 \>\>    EFRM=200.0 \\
1654 \>\>    FRAME='CMS' \\
1655 \>\>    PROJ='A' \\
1656 \>\>    TARG='A' \\
1657 \>\>    IAP=197 \\
1658 \>\>    IZP=79 \\
1659 \>\>    IAT=197 \\
1660 \>\>    IZT=79 \\
1661 \>\>    CALL HIJSET (EFRM, FRAME, PROJ, TARG, IAP, IZP, IAT, IZT) \\
1662 C....set BMIN=0 and BMAX=R\_A+R\_B \>\> \\
1663 \>\>    BMIN=0.0 \\
1664 \>\>    BMAX=HIPR1(34)+HIPR1(35) \\
1665 C....calculate the Glauber probability and its integrated value:\>\> \\
1666 \>\>    DIP=(BMAX-BMIN)/100.0 \\
1667 \>\>    GBTOT=0.0 \\
1668 \>\>    DO 100 I=1,101 \\
1669 \>\>    \hspace{24pt}XB(I)=BMIN+(I-1)*DIP \\
1670 \>\>    \hspace{24pt}OV=PROFILE(XB(I)) \\
1671 \>\>    \hspace{24pt}GB(I)=XB(I)*(1.0-EXP(-HINT(12)*OV)) \\
1672 \>\>    \hspace{24pt}GBTOT=GBTOT+GB(I) \\
1673 100\>\> CONTINUE \\
1674 C....generating 10 events for each of 100 impact parameter intervals:\>\> \\
1675 \>\>    NONT=0 \\
1676 \>\>    GNORM=GBTOT \\
1677 \>\>    N\_EVENT=10 \\
1678 \>\>    DO 300 IB=1,100 \\
1679 \>\>    \hspace{24pt}B1=XB(IB) \\
1680 \>\>    \hspace{24pt}B2=XB(IB+1)\\
1681 C.......\>\>normalized Glauber probability:\\
1682 \>\>    \hspace{24pt}W\_GB=(GB(IB)+GB(IB+1))/2.0/GBTOT\\
1683 \>\>    \hspace{24pt}DO 200 IE=1,N\_EVENT\\
1684 \>\>    \hspace{48pt}CALL HIJING(FRAME,B1,B2) \\
1685 C........\>\>count number of events without any interaction\\
1686 C........\>\>and renormalize the total Glauber probability:\\
1687 \>\>    \hspace{48pt}IF (NATT .EQ. 0) THEN \\
1688 \>\>    \hspace{62pt}NONT=NONT+1 \\
1689 \>\>    \hspace{62pt}GNORM=GNORM-GB(IB)/FLOAT(N\_EVENT) \\
1690 \>\>    \hspace{62pt}GO TO 200\\
1691 \>\>    \hspace{48pt}ENDIF \\
1692 C....calculate pt distribution of charged pions: \>\> \\
1693 \>\>    \hspace{48pt}DO 150 K=1,NATT \\
1694 C........\>\>select charged pions only: \\
1695 \>\>    \hspace{62pt}IF (ABS(KATT(K,1)) .NE. 211) GO TO 150 \\
1696 C........\>\>calculate pt: \\
1697 \>\>    \hspace{62pt}PTR=SQRT(PATT(K,1)**2+PATT(K,2)**2) \\
1698 C........\>\>calculate pt distribution and weight with normalized\\
1699 C........\>\>Glauber probability to get minimum bias result:\\
1700 \>\>    \hspace{62pt}IF (PTR .GT. 10.0) GO TO 150 \\
1701 \>\>    \hspace{62pt}IPT=PTR/0.2 \\
1702 \>\>    \hspace{62pt}DNDP(IPT)=DNDP(IPT)+1.0/W\_GB/FLOAT(N\_EVENT)/0.2 \\
1703 150\>\> \hspace{48pt}CONTINUE \\
1704 200\>\> \hspace{24pt}CONTINUE \\
1705 300\>\> CONTINUE \\
1706 C....renormalize the distribution by the renormalized Glauber \>\> \\
1707 C....probability which excludes the events without any interaction: \>\> \\
1708 \>\>    IF(NONT.NE.0) THEN \\
1709 \>\>    \hspace{24pt}DO 400 I=1,50 \\
1710 \>\>    \hspace{48pt}DNDP(I)=DNDP(I)*GBTOT/GNORM \\
1711 400\>\> \hspace{24pt}CONTINUE \\
1712 \>\>    ENDIF \\
1713 \>\>    STOP \\
1714 \>\>    END 
1715 \end{tabbing}
1716                 }
1717 
1718 
1719 
1720 \subsection{Events with triggered hard processes}
1721 
1722         Sometimes, users may want to study events with a hard process.
1723 Since these processes, especially with large transverse momentum, have
1724 very small cross section, it is very inefficient to sort them out among
1725 huge number of ordinary events. However, in HIJING, one can trigger
1726 on such events and generate one hard process in each event with the
1727 background correctly incorporated. One can then calculate the absolute
1728 cross section of such events by using the information stored in
1729 HINT(12) (inelastic $N$-$N$ cross section) and HINT1(59) ( cross section 
1730 of triggered process in $N$-$N$ collisions). HIPR1(10) is used to
1731 specify the $P_T$ value or its range.
1732 
1733         In the current version, both large $P_T$ jets (IHPR2(3)=1) 
1734 and direct photon production (IHPR2(3)=2) are included. In the
1735 following, we give an example on how to generate a pair of large $P_T$
1736 jets above 20 GeV/$c$ in a central $Au+Au$ collision 
1737 at $\sqrt{s}=200$ GeV/n.
1738 
1739 
1740 {\tt
1741 \begin{tabbing}
1742 AAAAA\=AAA\=  \kill
1743         \> \>CHARACTER FRAME*8, PROJ*8, TARG*8 \\
1744 \>\>    COMMON/HIPARNT/HIPR1(100), IHPR2(50), HINT1(100), IHNT2(50) \\
1745 C.....switch off jet quenching: \>\> \\
1746 \>\>    IHPR2(4)=0 \\
1747 C.....switch on triggered jet production: \>\>\\
1748 \>\>    IHPR2(3)=1 \\
1749 C.....set the pt range of the triggered jets: \>\> \\
1750 \>\>    HIPR1(10)=-20 \\
1751 C....initialize HIJING for Au+Au collisions at c.m. energy of 200 GeV: \> \>\\
1752 \>\>    EFRM=200.0 \\
1753 \>\>    FRAME='CMS' \\
1754 \>\>    PROJ='A' \\
1755 \>\>    TARG='A' \\
1756 \>\>    IAP=197 \\
1757 \>\>    IZP=79 \\
1758 \>\>    IAT=197 \\
1759 \>\>    IZT=79 \\
1760 \>\>    CALL HIJSET (EFRM, FRAME, PROJ, TARG, IAP, IZP, IAT, IZT) \\
1761 C....generating one central event with triggered jet production:\>\> \\
1762 \>\>    BMIN=0.0 \\
1763 \>\>    BMAX=0.0 \\
1764 \>\>    CALL HIJING (FRAME, BMIN, BMAX) \\
1765 C....print out flavor code of the first jet:\>\> \\ 
1766 \>\>    WRITE(*,*) IHNT2(9) \\
1767 C....and its four momentum:\>\> \\
1768 \>\>    WRITE(*,*) HINT1(21), HINT1(22), HINT1(23), HINT1(24) \\
1769 C....print out flavor code of the second jet:\>\> \\ 
1770 \>\>    WRITE(*,*) IHNT2(10) \\
1771 C....and its four momentum:\>\> \\
1772 \>\>    WRITE(*,*) HINT1(31), HINT1(32), HINT1(33), HINT1(34) \\
1773 \>\>    STOP \\
1774 \>\>    END
1775 \end{tabbing}
1776                 }
1777 
1778 
1779 
1780 \section*{Acknowledgements}
1781 
1782 
1783         During the development of this program, we benefited a lot
1784 from discussions with J.~Carroll, J.~W.~Harris, P.~Jacobs, 
1785 M.~A.~Bloomer, and A.~Poskanzer.
1786 We would like to thank T.~Sj\"{o}strand for making available
1787 JETSET and PYTHIA Monte Carlo programs on which HIJING is based on.
1788 We would also like to thank K.~J.~Eskola for helpful comments and
1789 discussions.
1790 
1791 
1792 \section*{Appendix: Flavor Code}
1793 
1794         For users' reference, a selection of flavor codes from JETSET 7.2 
1795 are listed below. For full list please check JETSET documentation. 
1796 The codes for anti-particles are just the negative values of the 
1797 corresponding particles.
1798 
1799 \begin{tabbing}
1800 bbbbbbbbbbbbbbb\=bbbbbb\=bbbbbbbbbbbbbb\=bbbbbb\= \kill
1801 Quarks and leptons \> \> \> \> \\
1802 \>              1       \>d             \>11    \>$e^-$ \\
1803 \>              2       \>u             \>12    \>$\nu_e$ \\
1804 \>              3       \>s             \>13    \>$\mu^-$ \\
1805 \>              4       \>c             \>14    \>$\nu_{\mu}$ \\
1806 \>              5       \>b             \>15    \>$\tau^-$ \\
1807 \>              6       \>t             \>16    \>$\nu_{\tau}$ \\
1808 \>\>\>\> \\
1809 Gauge bosons \>\>\>\> \\
1810 \>              21      \>g \>\> \\
1811 \>              22      \>$\gamma$ \>\> \\
1812 \>\>\>\> \\
1813 Diquarks \>\>\>\> \\
1814 \>                      \>              \>1103  \>dd$_1$ \\
1815 \>              2101    \>ud$_0$        \>2103  \>ud$_1$ \\
1816 \>                      \>              \>2203  \>uu$_1$ \\
1817 \>              3101    \>sd$_0$        \>3103  \>sd$_1$ \\
1818 \>              3201    \>su$_0$        \>3203  \>su$_1$ \\
1819 \>                      \>              \>3303  \>ss$_1$ \\
1820 \>\>\>\> \\
1821 Mesons \>\>\>\> \\
1822 \>              211     \>$\pi^+$       \>213   \>$\rho^+$ \\
1823 \>              311     \>K$^0$         \>313   \>K$^{*0}$ \\
1824 \>              321     \>K$^+$         \>323   \>K$^{*+}$ \\
1825 \>              411     \>D$^+$         \>413   \>D$^{*+}$ \\
1826 \>              421     \>D$^0$         \>423   \>D$^{*0}$ \\
1827 \>              431     \>D$_{\mbox{s}}^+$      
1828                                 \>433   \>D$_{\mbox{s}}^{*+}$ \\
1829 \>              511     \>B$^0$         \>513   \>B$^{*0}$ \\
1830 \>              521     \>B$^+$         \>523   \>B$^{*+}$ \\
1831 \>              531     \>B$_{\mbox{s}}^0$      
1832                                 \>533   \>B$_{\mbox{s}}^{*0}$ \\
1833 \>              111     \>$\pi^0$       \>113   \>$\rho^0$ \\
1834 \>              221     \>$\eta$        \>223   \>$\omega$ \\
1835 \>              331     \>$\eta'$       \>333   \>$\phi$ \\
1836 \>              441     \>$\eta_{\mbox{c}}$     \>443   \>J/$\psi$ \\
1837 \>              551     \>$\eta_{\mbox{b}}$     \>553   \>$\Upsilon$ \\
1838 \>              661     \>$\eta_{\mbox{t}}$     \>663   \>$\Theta$ \\
1839 \>              130     \>K$_L^0$ \>\> \\
1840 \>              310     \>K$_S^0$ \>\> \\
1841 \>\>\>\> \\
1842 Baryons \>\>\>\> \\
1843 \>                      \>              \>1114  \>$\Delta^-$ \\
1844 \>              2112    \>n             \>2114  \>$\Delta^0$ \\
1845 \>              2212    \>p             \>2214  \>$\Delta^+$ \\
1846 \>                      \>              \>2224  \>$\Delta^{++}$ \\
1847 \>              3112    \>$\Sigma^-$    \>3114  \>$\Sigma^{*-}$ \\
1848 \>              3122    \>$\Lambda^0$   \> \> \\
1849 \>              3212    \>$\Sigma^0$    \>3214  \>$\Sigma^{*0}$ \\
1850 \>              3222    \>$\Sigma^+$    \>3224  \>$\Sigma^{*+}$ \\
1851 \>              3312    \>$\Xi^-$       \>3314  \>$\Xi^{*-}$ \\
1852 \>              3322    \>$\Xi^0$       \>3324  \>$\Xi^{*0}$ \\
1853 \>                      \>              \>3334  \>$\Omega^-$ \\
1854 \>              4112    \>$\Sigma_{\mbox{c}}^0$ 
1855                                 \>4114  \>$\Sigma_{\mbox{c}}^{*0}$ \\
1856 \>              4122    \>$\Lambda_{\mbox{c}}^+$ \> \> \\
1857 \>              4212    \>$\Sigma_{\mbox{c}}^+$ 
1858                                 \>4214  \>$\Sigma_{\mbox{c}}^{*+}$ \\
1859 \>              4222    \>$\Sigma_{\mbox{c}}^{++}$      
1860                                 \>4224  \>$\Sigma_{\mbox{c}}^{*++}$ \\
1861 \>              4132    \>$\Xi_{\mbox{c}}^0$    \> \> \\
1862 \>              4312    \>$\Xi'$$_{\mbox{c}}^0$         
1863                                 \>4314  \>$\Xi_{\mbox{c}}^{*0}$ \\
1864 \>              4232    \>$\Xi_{\mbox{c}}^+$    \> \> \\
1865 \>              4322    \>$\Xi'$$_{\mbox{c}}^+$         
1866                                 \>4324  \>$\Xi_{\mbox{c}}^{*+}$ \\
1867 \>              4332    \>$\Omega_{\mbox{c}}^0$
1868                                 \>4334  \>$\Omega_{\mbox{c}}^{*0}$ \\
1869 \>              5112    \>$\Sigma_{\mbox{b}}^-$ 
1870                                 \>5114  \>$\Sigma_{\mbox{b}}^{*-}$ \\
1871 \>              5122    \>$\Lambda_{\mbox{b}}^0$        \>\> \\
1872 \>              5212    \>$\Sigma_{\mbox{b}}^0$ 
1873                                 \>5214  \>$\Sigma_{\mbox{b}}^{*0}$ \\
1874 \>              5222    \>$\Sigma_{\mbox{b}}^+$ 
1875                                 \>5224  \>$\Sigma_{\mbox{b}}^{*+}$
1876 \end{tabbing}
1877 
1878 \pagebreak
1879 
1880 \begin{thebibliography}{99}
1881 
1882 \bibitem{review} S.~Shuryak, Phys. Rep. {\bf 61}, 71 (1980); D.~Gross, 
1883         R.~Pisarsky and L.~Yaffe, Rev. Mod. Phys. {\bf 53}, 43 (1981);
1884         H.~Satz, Ann. Rev. Nucl. Part. Sci. {\bf 35}, 245 (1985);
1885         L.~McLerran, Rev. Mod. Phys. {\bf 58}, 1021 (1986).
1886 \bibitem{kaja} K.~Kajantie, P.~V.~Landshoff and J.~Lindfors, Phys. Rev. Lett.
1887         {\bf 59}, 2517 (1987); K.~J.~Eskola, K.~Kajantie and J.~Lindfors,
1888         Nucl. Phys. {\bf B323}, 37 (1989); G.~Calucci and D.~Treleani,
1889         Phys. Rev. D {\bf 41}, 3367 (1990).
1890 \bibitem{geist} W.~M.~Geist, {\em et at.}, Phys. Rep. {\bf 197}, 263 (1990).
1891 \bibitem{ua2jet} M.~Manner {\em et al.}, Phys. Lett. {\bf 118B}, 203 (1982);
1892         G.~Arnison {\em et al.}, {\bf 123B}, 115 (1983).
1893 \bibitem{alba88} C.~Albajar, {\em et al.}, Nucl. Phys. {\bf B309}, 
1894         405 (1988); {\bf B335}, 261 (1990).
1895 \bibitem{ua1minijet} C.~Albajar, {\em et al.}, Nucl. Phys. {\bf B309},
1896                 405 (1988).
1897 \bibitem{gaisser} A.~Capella and J.~Tran Thanh Van, Z.~Phys. {\bf C 23},
1898         165 (1984);  T.~K.~Gaisser and F.~Halzen, Phys. Rev. Lett. {\bf 54},
1899         1754 (1985); G.~Pancheri and Y.~N.~Srivastava, Phys. Lett. {\bf 182B},
1900         199 (1986); L.~Durand and H.~Pi, Phys. Rev. Lett. {\bf 58}, 303 (1987).
1901 \bibitem{sjostrand} T.~Sj\"{o}strand and M.~van Zijl, Phys. Rev. {\bf D 36},
1902         2019 (1987).
1903 \bibitem{wang91a}X.~N.~Wang, Phys. Rev. {\bf D 43}, 104 (1991).
1904 \bibitem{gyu89} M.~Gyulassy and M.~Pl\"{u}mer, Phys. Lett. {\bf 243B}, 
1905         432 (1990).
1906 \bibitem{hijing} X.~N.~Wang and M.~Gyulassy, Phys. Rev. {\bf D 44}, 
1907         3501 (1991).
1908 \bibitem{lund} B.~Andersson, G.~Gustafson, G.~Ingelman and T.~Sj\"{o}strand,
1909         Phys. Rep. {\bf 97},31 (1983).
1910 \bibitem{fritiof} B.~Andersson, G.~Gustafson and B.~Nilsson-Almquist,
1911         Nucl. Phys. {\bf B281}, 289 (1987); B.~Nilsson-Almqvist and
1912         E.~Stenlund, Comp. Phys. Comm. {\bf 43}, 387 (1987).
1913 \bibitem{dpm} A.~Capella, U.~Sukhatme and J.~Tran Thanh Van, Z.~Phys.
1914         {\bf C 3}, 329 (1980); J.~Ranft, Phys. Rev. D {\bf 37}, 1842 (1988); 
1915         Phys. Lett. {\bf 188B}, 379 (1987).
1916 \bibitem{pythia} H.-U.~Bengtsson and T.~Sj\"{o}strand, 
1917         Comp. Phys. Commun. {\bf 46}, 43 (1987).
1918 \bibitem{shadow1} EM Collab., J.~Ashman, {\em et al.}, Phys. Lett. {\bf 202B},
1919         603 (1988); EM Collab., M.~Arneodo, {\em et al.}, Phys. Lett.
1920         {\bf 211B}, 493 (1988).
1921 \bibitem{wang92a} X.~N.~Wang and M.~Gyulassy, Phys. Rev. Lett. {\bf 68},
1922         148 (1992).
1923 \bibitem{gyu92} M.~Gyulassy, {\em et al.}, Nucl. Phys. {\bf A 538}, 37c (1992).
1924 \bibitem{hijingpp} X.~N.~Wang and M.~Gyulassy, Phys. Rev. {\bf D 45},
1925         844 (1992).
1926 \bibitem{geiger} K.~Geiger and B.~M\"{u}ller, Nucl. Phys. {\bf B 369},
1927         600 (1992).
1928 \bibitem{jetset} T.~Sj\"{o}strand, Comput. Phys. Commun. {\bf 39}, 347 (1986);
1929         T.~Sj\"{o}strand and M.~Bengtsson, Comput. Phys. Commun.
1930         {\bf 43}, 367 (1987)
1931 \bibitem{eichten} E.~Eichten, I.~Hinchliffe and C.~Quigg, Rev. Mod. Phys.
1932         {\bf 56}, 579 (1984).
1933 \bibitem{duke} D.~W.~Duke and J.~F.~Owens, Phys. Rev. {\bf D 30}, 50 (1984).
1934 \bibitem{heureux} P.~l'Heureux, {\em et al.}, Phys. Rev. {\bf D 32},
1935          1681 (1985); J.~Dias de Deus and J.~Kwiecinski, Phys. Lett. 
1936         {\bf 196B}, 537 (1987); R.~C.~Hwa, Phys. Rev. {\bf D 37}, 1830 (1988).
1937 \bibitem{goulianos} K.~Goulianos, Phys. Rep. {\bf 101}, 169 (1983).
1938 \bibitem{dipole} G.~Gustafson and U.~Pettersson, Nucl. Phys. {\bf B306},
1939         746 (1988); L.~L\"{o}nnblad, Lund preprint LU-TP-89-10.
1940 \bibitem{gunion} J.~K.~Gunion and G.~Bertsch, Phys. Rev. {\bf D 25}, 
1941         746 (1982).
1942 \bibitem{eskola93} K.~J.~Eskola, preprint LBL-32339, 
1943         Nucl. Phys. {\bf B} in press.
1944 \bibitem{shadow2} A.~H.~Mueller and J.~Qiu, Nucl. Phys. {\bf B 268}, 
1945         427 (1986); J.~Qiu, Nucl. Phys. {\bf B 291}, 746 (1987). 
1946 \bibitem{dedx} M.~Gyulassy and X.~N.~Wang, preprint LBL-32682.
1947 
1948 
1949 \end{thebibliography}
1950 
1951 
1952 \pagebreak
1953 
1954 {\noindent\Large\bf Figure Captions}
1955 \vspace{24pt}
1956 \begin{description}
1957 
1958 \item[Fig. 1] The rapidity distribution of charged particles produced in
1959               central $Au+Au$ collisions at $\sqrt{s}=200$ GeV/n, obtained
1960               from the example program for fixed impact parameter.
1961 
1962 \item[Fig. 2] The transverse momentum distribution of charged particles
1963               in central $Au+Au$ collisions, obtained from the example 
1964               program for fixed impact parameter.
1965 
1966 \end{description}
1967 
1968 \end{document}
1969 
1970 
1971 
1972                                     
1973