File indexing completed on 2025-08-06 08:11:30
0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <boost/test/unit_test.hpp>
0010
0011 #include "Acts/Definitions/Algebra.hpp"
0012 #include "Acts/Definitions/TrackParametrization.hpp"
0013 #include "Acts/Definitions/Units.hpp"
0014 #include "Acts/EventData/TransformationHelpers.hpp"
0015 #include "Acts/Geometry/GeometryContext.hpp"
0016 #include "Acts/Surfaces/CylinderBounds.hpp"
0017 #include "Acts/Surfaces/CylinderSurface.hpp"
0018 #include "Acts/Surfaces/DiscSurface.hpp"
0019 #include "Acts/Surfaces/PerigeeSurface.hpp"
0020 #include "Acts/Surfaces/PlaneSurface.hpp"
0021 #include "Acts/Surfaces/Surface.hpp"
0022 #include "Acts/Surfaces/SurfaceBounds.hpp"
0023 #include "Acts/TrackFitting/detail/GsfComponentMerging.hpp"
0024 #include "Acts/Utilities/Identity.hpp"
0025 #include "Acts/Utilities/Intersection.hpp"
0026 #include "Acts/Utilities/Result.hpp"
0027 #include "Acts/Utilities/detail/periodic.hpp"
0028
0029 #include <algorithm>
0030 #include <array>
0031 #include <cmath>
0032 #include <cstddef>
0033 #include <functional>
0034 #include <initializer_list>
0035 #include <memory>
0036 #include <random>
0037 #include <stdexcept>
0038 #include <tuple>
0039 #include <utility>
0040 #include <vector>
0041
0042 #include <Eigen/Eigenvalues>
0043
0044 #define CHECK_CLOSE_MATRIX(a, b, t) \
0045 BOOST_CHECK(((a - b).array().abs() < t).all())
0046
0047 using namespace Acts;
0048 using namespace Acts::UnitLiterals;
0049
0050
0051 template <int D>
0052 struct DummyComponent {
0053 Acts::ActsScalar weight = 0;
0054 Acts::ActsVector<D> boundPars;
0055 Acts::ActsSquareMatrix<D> boundCov;
0056 };
0057
0058
0059
0060 template <typename T, int D>
0061 class MultivariateNormalDistribution {
0062 public:
0063 using Vector = Eigen::Matrix<T, D, 1>;
0064 using Matrix = Eigen::Matrix<T, D, D>;
0065
0066 private:
0067 Vector m_mean;
0068 Matrix m_transform;
0069
0070 public:
0071 MultivariateNormalDistribution(Vector const &mean, Matrix const &boundCov)
0072 : m_mean(mean) {
0073 Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigenSolver(boundCov);
0074 m_transform = eigenSolver.eigenvectors() *
0075 eigenSolver.eigenvalues().cwiseSqrt().asDiagonal();
0076 }
0077
0078 template <typename generator_t>
0079 Vector operator()(generator_t &gen) const {
0080 std::normal_distribution<T> normal;
0081 return m_mean +
0082 m_transform * Vector{}.unaryExpr([&](auto) { return normal(gen); });
0083 }
0084 };
0085
0086
0087 template <int D>
0088 auto sampleFromMultivariate(const std::vector<DummyComponent<D>> &cmps,
0089 std::size_t n_samples, std::mt19937 &gen) {
0090 using MultiNormal = MultivariateNormalDistribution<double, D>;
0091
0092 std::vector<MultiNormal> dists;
0093 std::vector<double> weights;
0094 for (const auto &cmp : cmps) {
0095 dists.push_back(MultiNormal(cmp.boundPars, cmp.boundCov));
0096 weights.push_back(cmp.weight);
0097 }
0098
0099 std::discrete_distribution choice(weights.begin(), weights.end());
0100
0101 auto sample = [&]() {
0102 const auto n = choice(gen);
0103 return dists[n](gen);
0104 };
0105
0106 std::vector<ActsVector<D>> samples(n_samples);
0107 std::generate(samples.begin(), samples.end(), sample);
0108
0109 return samples;
0110 }
0111
0112
0113 template <int D>
0114 auto mean(const std::vector<ActsVector<D>> &samples) -> ActsVector<D> {
0115 ActsVector<D> mean = ActsVector<D>::Zero();
0116
0117 for (const auto &x : samples) {
0118 mean += x;
0119 }
0120
0121 return mean / samples.size();
0122 }
0123
0124
0125
0126 template <int D>
0127 auto circularMean(const std::vector<ActsVector<D>> &samples) -> ActsVector<D> {
0128 ActsVector<D> x = ActsVector<D>::Zero();
0129 ActsVector<D> y = ActsVector<D>::Zero();
0130
0131 for (const auto &s : samples) {
0132 for (int i = 0; i < D; ++i) {
0133 x[i] += std::cos(s[i]);
0134 y[i] += std::sin(s[i]);
0135 }
0136 }
0137
0138 ActsVector<D> mean = ActsVector<D>::Zero();
0139
0140 for (int i = 0; i < D; ++i) {
0141 mean[i] = std::atan2(y[i], x[i]);
0142 }
0143
0144 return mean;
0145 }
0146
0147
0148
0149 template <int D, typename subtract_t = std::minus<ActsVector<D>>>
0150 auto boundCov(const std::vector<ActsVector<D>> &samples,
0151 const ActsVector<D> &mu, const subtract_t &sub = subtract_t{})
0152 -> ActsSquareMatrix<D> {
0153 ActsSquareMatrix<D> boundCov = ActsSquareMatrix<D>::Zero();
0154
0155 for (const auto &smpl : samples) {
0156 boundCov += sub(smpl, mu) * sub(smpl, mu).transpose();
0157 }
0158
0159 return boundCov / samples.size();
0160 }
0161
0162
0163
0164
0165 BoundVector meanFromFree(std::vector<DummyComponent<eBoundSize>> cmps,
0166 const Surface &surface) {
0167
0168
0169 if (surface.type() == Surface::Cylinder) {
0170 auto x = 0.0, y = 0.0;
0171 const auto r = surface.bounds().values()[CylinderBounds::eR];
0172
0173 for (const auto &cmp : cmps) {
0174 x += cmp.weight * std::cos(cmp.boundPars[eBoundLoc0] / r);
0175 y += cmp.weight * std::sin(cmp.boundPars[eBoundLoc0] / r);
0176 }
0177
0178 for (auto &cmp : cmps) {
0179 cmp.boundPars[eBoundLoc0] = std::atan2(y, x) * r;
0180 }
0181 }
0182
0183 if (surface.type() == Surface::Cone) {
0184 throw std::runtime_error("Cone surface not supported");
0185 }
0186
0187 FreeVector mean = FreeVector::Zero();
0188
0189 for (const auto &cmp : cmps) {
0190 mean += cmp.weight * transformBoundToFreeParameters(
0191 surface, GeometryContext{}, cmp.boundPars);
0192 }
0193
0194 mean.segment<3>(eFreeDir0).normalize();
0195
0196
0197
0198
0199 Vector3 position = mean.head<3>();
0200 Vector3 direction = mean.segment<3>(eFreeDir0);
0201 auto intersection = surface
0202 .intersect(GeometryContext{}, position, direction,
0203 BoundaryCheck(false))
0204 .closest();
0205 mean.head<3>() = intersection.position();
0206
0207 return *transformFreeToBoundParameters(mean, surface, GeometryContext{});
0208 }
0209
0210
0211 using LocPosArray = std::array<std::pair<double, double>, 4>;
0212
0213
0214
0215 template <typename angle_description_t>
0216 void test_surface(const Surface &surface, const angle_description_t &desc,
0217 const LocPosArray &loc_pos, double expectedError) {
0218 const auto proj = Identity{};
0219
0220 for (auto phi : {-175_degree, 0_degree, 175_degree}) {
0221 for (auto theta : {5_degree, 90_degree, 175_degree}) {
0222
0223 std::vector<DummyComponent<eBoundSize>> cmps;
0224
0225 auto p_it = loc_pos.begin();
0226
0227 for (auto dphi : {-10_degree, 10_degree}) {
0228 for (auto dtheta : {-5_degree, 5_degree}) {
0229 DummyComponent<eBoundSize> a;
0230 a.weight = 1. / 4.;
0231 a.boundPars = BoundVector::Ones();
0232 a.boundPars[eBoundLoc0] *= p_it->first;
0233 a.boundPars[eBoundLoc1] *= p_it->second;
0234 a.boundPars[eBoundPhi] =
0235 detail::wrap_periodic(phi + dphi, -M_PI, 2 * M_PI);
0236 a.boundPars[eBoundTheta] = theta + dtheta;
0237
0238
0239 a.boundCov = BoundSquareMatrix::Zero();
0240
0241 cmps.push_back(a);
0242 ++p_it;
0243 }
0244 }
0245
0246 const auto [mean_approx, cov_approx] =
0247 detail::gaussianMixtureMeanCov(cmps, proj, desc);
0248
0249 const auto mean_ref = meanFromFree(cmps, surface);
0250
0251 CHECK_CLOSE_MATRIX(mean_approx, mean_ref, expectedError);
0252 }
0253 }
0254 }
0255
0256 BOOST_AUTO_TEST_CASE(test_with_data) {
0257 std::mt19937 gen(42);
0258 std::vector<DummyComponent<2>> cmps(2);
0259
0260 cmps[0].boundPars << 1.0, 1.0;
0261 cmps[0].boundCov << 1.0, 0.0, 0.0, 1.0;
0262 cmps[0].weight = 0.5;
0263
0264 cmps[1].boundPars << -2.0, -2.0;
0265 cmps[1].boundCov << 1.0, 1.0, 1.0, 2.0;
0266 cmps[1].weight = 0.5;
0267
0268 const auto samples = sampleFromMultivariate(cmps, 10000, gen);
0269 const auto mean_data = mean(samples);
0270 const auto boundCov_data = boundCov(samples, mean_data);
0271
0272 const auto [mean_test, boundCov_test] =
0273 detail::gaussianMixtureMeanCov(cmps, Identity{}, std::tuple<>{});
0274
0275 CHECK_CLOSE_MATRIX(mean_data, mean_test, 1.e-1);
0276 CHECK_CLOSE_MATRIX(boundCov_data, boundCov_test, 1.e-1);
0277 }
0278
0279 BOOST_AUTO_TEST_CASE(test_with_data_circular) {
0280 std::mt19937 gen(42);
0281 std::vector<DummyComponent<2>> cmps(2);
0282
0283 cmps[0].boundPars << 175_degree, 5_degree;
0284 cmps[0].boundCov << 20_degree, 0.0, 0.0, 20_degree;
0285 cmps[0].weight = 0.5;
0286
0287 cmps[1].boundPars << -175_degree, -5_degree;
0288 cmps[1].boundCov << 20_degree, 20_degree, 20_degree, 40_degree;
0289 cmps[1].weight = 0.5;
0290
0291 const auto samples = sampleFromMultivariate(cmps, 10000, gen);
0292 const auto mean_data = circularMean(samples);
0293 const auto boundCov_data = boundCov(samples, mean_data, [](auto a, auto b) {
0294 Vector2 res = Vector2::Zero();
0295 for (int i = 0; i < 2; ++i) {
0296 res[i] = detail::difference_periodic(a[i], b[i], 2 * M_PI);
0297 }
0298 return res;
0299 });
0300
0301 using detail::CyclicAngle;
0302 const auto d = std::tuple<CyclicAngle<eBoundLoc0>, CyclicAngle<eBoundLoc1>>{};
0303 const auto [mean_test, boundCov_test] =
0304 detail::gaussianMixtureMeanCov(cmps, Identity{}, d);
0305
0306 BOOST_CHECK(std::abs(detail::difference_periodic(mean_data[0], mean_test[0],
0307 2 * M_PI)) < 1.e-1);
0308 BOOST_CHECK(std::abs(detail::difference_periodic(mean_data[1], mean_test[1],
0309 2 * M_PI)) < 1.e-1);
0310 CHECK_CLOSE_MATRIX(boundCov_data, boundCov_test, 1.e-1);
0311 }
0312
0313 BOOST_AUTO_TEST_CASE(test_plane_surface) {
0314 const auto desc = detail::AngleDescription<Surface::Plane>::Desc{};
0315
0316 const auto surface =
0317 Surface::makeShared<PlaneSurface>(Vector3{0, 0, 0}, Vector3{1, 0, 0});
0318
0319 const LocPosArray p{{{1, 1}, {1, -1}, {-1, 1}, {-1, -1}}};
0320
0321 test_surface(*surface, desc, p, 1.e-2);
0322 }
0323
0324 BOOST_AUTO_TEST_CASE(test_cylinder_surface) {
0325 const Transform3 trafo = Transform3::Identity();
0326 const double r = 2;
0327 const double halfz = 100;
0328
0329 const auto surface = Surface::makeShared<CylinderSurface>(trafo, r, halfz);
0330
0331 const double z1 = -1, z2 = 1;
0332 const double phi1 = 178_degree, phi2 = -176_degree;
0333
0334 const LocPosArray p{
0335 {{r * phi1, z1}, {r * phi1, -z2}, {r * phi2, z1}, {r * phi2, z2}}};
0336
0337 auto desc = detail::AngleDescription<Surface::Cylinder>::Desc{};
0338 std::get<0>(desc).constant = r;
0339
0340 test_surface(*surface, desc, p, 1.e-2);
0341 }
0342
0343 BOOST_AUTO_TEST_CASE(test_disc_surface) {
0344 const Transform3 trafo = Transform3::Identity();
0345 const auto radius = 1;
0346
0347 const auto surface = Surface::makeShared<DiscSurface>(trafo, 0.0, radius);
0348
0349 const double r1 = 0.4, r2 = 0.8;
0350 const double phi1 = -178_degree, phi2 = 176_degree;
0351
0352 const LocPosArray p{{{r1, phi1}, {r2, phi2}, {r1, phi2}, {r2, phi1}}};
0353
0354 const auto desc = detail::AngleDescription<Surface::Disc>::Desc{};
0355
0356 test_surface(*surface, desc, p, 1.e-2);
0357 }
0358
0359 BOOST_AUTO_TEST_CASE(test_perigee_surface) {
0360 const auto desc = detail::AngleDescription<Surface::Plane>::Desc{};
0361
0362 const auto surface = Surface::makeShared<PerigeeSurface>(Vector3{0, 0, 0});
0363
0364 const auto z = 5;
0365 const auto d = 1;
0366
0367 const LocPosArray p{{{d, z}, {d, -z}, {2 * d, z}, {2 * d, -z}}};
0368
0369
0370 test_surface(*surface, desc, p, 1.1);
0371 }