File indexing completed on 2025-08-06 08:11:30
0001
0002
0003
0004
0005
0006
0007
0008
0009 #include <boost/test/unit_test.hpp>
0010
0011 #include "Acts/Definitions/Algebra.hpp"
0012 #include "Acts/Definitions/TrackParametrization.hpp"
0013 #include "Acts/EventData/MultiTrajectory.hpp"
0014 #include "Acts/EventData/TrackStatePropMask.hpp"
0015 #include "Acts/EventData/VectorMultiTrajectory.hpp"
0016 #include "Acts/Geometry/GeometryContext.hpp"
0017 #include "Acts/Tests/CommonHelpers/FloatComparisons.hpp"
0018 #include "Acts/TrackFitting/GainMatrixSmoother.hpp"
0019 #include "Acts/Utilities/Result.hpp"
0020
0021 #include <cmath>
0022 #include <cstddef>
0023
0024 namespace {
0025
0026 using namespace Acts;
0027 using namespace Acts::Test;
0028
0029 using ParametersVector = Acts::BoundVector;
0030 using CovarianceMatrix = Acts::BoundSquareMatrix;
0031 using Jacobian = Acts::BoundMatrix;
0032
0033 const Acts::GeometryContext tgContext;
0034
0035 }
0036
0037 BOOST_AUTO_TEST_SUITE(TrackFittingGainMatrixSmoother)
0038
0039 BOOST_AUTO_TEST_CASE(Smooth) {
0040 VectorMultiTrajectory traj;
0041 std::size_t ts_idx = traj.addTrackState(TrackStatePropMask::All);
0042 auto ts = traj.getTrackState(ts_idx);
0043
0044
0045 CovarianceMatrix covTrk;
0046 covTrk.setIdentity();
0047 covTrk.diagonal() << 0.08, 0.3, 1, 1, 1, 1;
0048 BoundVector parValues;
0049 parValues << 0.3, 0.5, 0.5 * M_PI, 0., 1 / 100., 0.;
0050
0051 ts.predicted() = parValues;
0052 ts.predictedCovariance() = covTrk;
0053
0054 parValues << 0.301, 0.503, 0.5 * M_PI, 0., 1 / 100., 0.;
0055
0056 ts.filtered() = parValues;
0057 ts.filteredCovariance() = covTrk;
0058 ts.pathLength() = 1.;
0059 ts.jacobian().setIdentity();
0060
0061 ts_idx = traj.addTrackState(TrackStatePropMask::All, ts_idx);
0062 ts = traj.getTrackState(ts_idx);
0063
0064 parValues << 0.2, 0.5, 0.5 * M_PI, 0., 1 / 100., 0.;
0065 ts.predicted() = parValues;
0066 ts.predictedCovariance() = covTrk;
0067
0068 parValues << 0.27, 0.53, 0.5 * M_PI, 0., 1 / 100., 0.;
0069 ts.filtered() = parValues;
0070 ts.filteredCovariance() = covTrk;
0071 ts.pathLength() = 2.;
0072 ts.jacobian().setIdentity();
0073
0074 ts_idx = traj.addTrackState(TrackStatePropMask::All, ts_idx);
0075 ts = traj.getTrackState(ts_idx);
0076
0077 parValues << 0.35, 0.49, 0.5 * M_PI, 0., 1 / 100., 0.;
0078 ts.predicted() = parValues;
0079 ts.predictedCovariance() = covTrk;
0080
0081 parValues << 0.33, 0.43, 0.5 * M_PI, 0., 1 / 100., 0.;
0082 ts.filtered() = parValues;
0083 ts.filteredCovariance() = covTrk;
0084 ts.pathLength() = 3.;
0085 ts.jacobian().setIdentity();
0086
0087
0088 BOOST_CHECK(GainMatrixSmoother()(tgContext, traj, ts_idx).ok());
0089
0090
0091
0092
0093 auto ts1 = traj.getTrackState(0);
0094 BOOST_CHECK(ts1.hasSmoothed());
0095 BOOST_CHECK_NE(ts1.filtered(), ts1.smoothed());
0096
0097 double tol = 1e-6;
0098
0099 ParametersVector expPars;
0100 expPars << 0.3510000, 0.4730000, 1.5707963, 0.0000000, 0.0100000, 0.0000000;
0101 CovarianceMatrix expCov;
0102 expCov.setIdentity();
0103 expCov.diagonal() << 0.0800000, 0.3000000, 1.0000000, 1.0000000, 1.0000000,
0104 1.0000000;
0105 CHECK_CLOSE_ABS(ts1.smoothed(), expPars, tol);
0106 CHECK_CLOSE_ABS(ts1.smoothedCovariance(), expCov, tol);
0107
0108 auto ts2 = traj.getTrackState(1);
0109 BOOST_CHECK(ts2.hasSmoothed());
0110 BOOST_CHECK_NE(ts2.filtered(), ts2.smoothed());
0111
0112 expPars << 0.2500000, 0.4700000, 1.5707963, 0.0000000, 0.0100000, 0.0000000;
0113 CHECK_CLOSE_ABS(ts2.smoothed(), expPars, tol);
0114 CHECK_CLOSE_ABS(ts2.smoothedCovariance(), expCov, tol);
0115
0116 auto ts3 = traj.getTrackState(2);
0117 BOOST_CHECK(ts3.hasSmoothed());
0118
0119 BOOST_CHECK_EQUAL(ts3.filtered(), ts3.smoothed());
0120
0121 expPars << 0.3300000, 0.4300000, 1.5707963, 0.0000000, 0.0100000, 0.0000000;
0122 CHECK_CLOSE_ABS(ts3.smoothed(), expPars, tol);
0123 CHECK_CLOSE_ABS(ts3.smoothedCovariance(), expCov, tol);
0124 }
0125
0126 BOOST_AUTO_TEST_SUITE_END()