![]() |
|
|||
File indexing completed on 2025-08-05 08:09:10
0001 // This file is part of the Acts project. 0002 // 0003 // Copyright (C) 2016-2019 CERN for the benefit of the Acts project 0004 // 0005 // This Source Code Form is subject to the terms of the Mozilla Public 0006 // License, v. 2.0. If a copy of the MPL was not distributed with this 0007 // file, You can obtain one at http://mozilla.org/MPL/2.0/. 0008 0009 #pragma once 0010 0011 namespace Acts { 0012 0013 /// @verbatim embed:rst:leading-slashes 0014 /// All physical quantities have both a numerical value and a unit. For the 0015 /// computations we always choose a particular unit for a given physical 0016 /// quantity so we only need to consider the numerical values as such. The 0017 /// chosen base unit for a particular physical dimension, e.g. length, time, or 0018 /// energy, within this code base is called the native unit. The base units 0019 /// should be chosen such that they are internally consistent, require the least 0020 /// amount of explicit conversion factors (ideally none at all), and have 0021 /// typical numerical values close to unity to reduce numerical issues. 0022 /// 0023 /// Here, the following native units are used: 0024 /// 0025 /// - Length is expressed in mm. 0026 /// - Time is expressed in [speed-of-light * time] == mm. A consequence 0027 /// of this choice is that the speed-of-light expressed in native units 0028 /// is 1. 0029 /// - Angles are expressed in radian. 0030 /// - Energy, mass, and momentum are all expressed in GeV (consistent with 0031 /// speed-of-light == 1). 0032 /// - Electric charge is expressed in e, i.e. units of the elementary charge. 0033 /// - The magnetic field is expressed in GeV/(e*mm). The magnetic field 0034 /// connects momentum to length, e.g. in SI units the radius of a charged 0035 /// particle trajectory in a constant magnetic field is given by 0036 /// 0037 /// .. math:: 0038 /// 0039 /// radius = - (momentum / charge) / field 0040 /// 0041 /// With the chosen magnetic field unit the expression above stays the 0042 /// same and no additional conversion factors are necessary. 0043 /// - Amount of substance is expressed in mol. 0044 /// 0045 /// Depending on the context a physical quantity might not be given in the 0046 /// native units. In this case we need to convert to the native unit first 0047 /// before the value can be used. The necessary conversion factors are defined 0048 /// in ``Acts::UnitConstants``. Multiplying a value with the unit constant 0049 /// produces the equivalent value in the native unit, e.g. 0050 /// 0051 /// .. code-block:: cpp 0052 /// 0053 /// double length = 1 * Acts::UnitConstants::m; // length == 1000.0 0054 /// double momentum = 100 * Acts::UnitConstants::MeV; // momentum == 0.1 0055 /// 0056 /// The conversion of a value in native units into the equivalent value in a 0057 /// specific other unit is computed by dividing with the relevant unit, e.g. 0058 /// 0059 /// .. code-block:: cpp 0060 /// 0061 /// double length = 10.0; // native units mm 0062 /// double lengthInM = length / Acts::UnitConstants::m; // == 0.01; 0063 /// 0064 /// To further simplify the usage, physical quantities can also be expressed via 0065 /// `C++ user literals 0066 /// <https://en.cppreference.com/w/cpp/language/user_literal>`_ defined in 0067 /// ``Acts::UnitLiterals``. This allows us to express quantities in a concise 0068 /// way: 0069 /// 0070 /// .. code-block:: cpp 0071 /// 0072 /// using namespace Acts::UnitLiterals; 0073 /// 0074 /// double length = 1_m; // == 1000.0 0075 /// double momentum = 1.25_TeV; // == 1250.0 0076 /// double lengthInUm = length / 1_um; // == 1000000.0 0077 /// double momentumInMeV = momentum / 1_MeV; // == 1250000.0 0078 /// 0079 /// .. warning:: 0080 /// Since using user-defined literals requires a namespace import of 0081 /// ``Acts::UnitLiterals`` it should not be used in headers since it would 0082 /// (accidentally) modify the namespace wherever the header is included. 0083 /// 0084 /// To ensure consistent computations and results the following guidelines 0085 /// **must** be followed when handling physical quantities with units: 0086 /// 0087 /// - All unqualified numerical values, i.e. without a unit, are assumed to 0088 /// be expressed in the relevant native unit, e.g. mm for lengths or GeV 0089 /// for energy/momentum. 0090 /// - If a variable stores a physical quantity in a specific unit that is 0091 /// not the native unit, clearly mark this in the variable, i.e. 0092 /// 0093 /// .. code-block:: cpp 0094 /// 0095 /// double momentum = 100.0; // momentum is stored as native unit GeV 0096 /// double momentumInMeV = 10.0; // would be 0.01 in native units 0097 /// 0098 /// - All input values must be given as ``numerical_value * unit_constant`` or 0099 /// equivalently using the unit literals as ``value_unit``. The resulting 0100 /// unqualified numerical value will be automatically converted to the 0101 /// native unit. 0102 /// - To output an unqualified numerical value in the native units as a 0103 /// numerical value in a specific unit divide by the unit constants as 0104 /// ``numerical_value / unit_constant`` or using the unit literals as 0105 /// ``value / 1_unit``. 0106 /// 0107 /// Examples: 0108 /// 0109 /// .. code-block:: cpp 0110 /// 0111 /// #include <Acts/include/Definitions/Units.hpp> 0112 /// using namespace Acts::UnitLiterals; 0113 /// 0114 /// // define input values w/ units (via unit constants) 0115 /// double width = 12 * Acts::UnitConstants::mm; 0116 /// double mmuon = 105.7 * Acts::UnitConstants::MeV; 0117 /// // define input values w/ units (via unit user literals) 0118 /// double length = 23_cm; 0119 /// double time = 1214.2_ns; 0120 /// double angle = 123_degree; 0121 /// double momentum = 2.5_TeV; 0122 /// double mass = 511_keV; 0123 /// double velocity = 345_m / 1_s; 0124 /// double bfield = 3.9_T; 0125 /// 0126 /// // convert output values (via unit constants) 0127 /// double t_in_ns = trackPars.time() / Acts::UnitConstants::ns; 0128 /// // convert output values (via unit user literals) 0129 /// double x_in_mm = trackPars.position()[ePos0] / 1_mm; 0130 /// double p_in_TeV = trackPars.absoluteMomentum() / 1_TeV; 0131 /// 0132 /// @endverbatim 0133 0134 /// @note A helper script is available in 0135 /// `Core/scripts/print_units_physical_constants.py` to validate some of the 0136 /// numerical values. 0137 0138 namespace UnitConstants { 0139 // Length, native unit mm 0140 constexpr double mm = 1.0; 0141 constexpr double fm = 1e-12 * mm; 0142 constexpr double pm = 1e-9 * mm; 0143 constexpr double nm = 1e-6 * mm; 0144 constexpr double um = 1e-3 * mm; 0145 constexpr double cm = 1e1 * mm; 0146 constexpr double m = 1e3 * mm; 0147 constexpr double km = 1e6 * mm; 0148 // Shortcuts for commonly used area and volume units. This intentionally 0149 // contains not all possible combinations to avoid cluttering the namespace. 0150 // Missing area or volume units can always be defined on the fly using the 0151 // existing length units e.g. 1fm³ -> 1fm * 1fm * 1fm 0152 // Area, native unit mm² 0153 constexpr double mm2 = mm * mm; 0154 constexpr double cm2 = cm * cm; 0155 constexpr double m2 = m * m; 0156 // Volume, native unit mm³ 0157 constexpr double mm3 = mm * mm * mm; 0158 constexpr double cm3 = cm * cm * cm; 0159 constexpr double m3 = m * m * m; 0160 // Time, native unit mm = [speed-of-light * time] = mm/s * s 0161 /// @note Depends on speed of light in SI units 0162 constexpr double s = 299792458000.0; // = 299792458.0 * (m / 1.0) * 1.0; 0163 constexpr double fs = 1e-15 * s; 0164 constexpr double ps = 1e-12 * s; 0165 constexpr double ns = 1e-9 * s; 0166 constexpr double us = 1e-6 * s; 0167 constexpr double ms = 1e-3 * s; 0168 constexpr double min = 60.0 * s; 0169 constexpr double h = 3600.0 * s; 0170 // Angles, native unit radian 0171 constexpr double mrad = 1e-3; 0172 constexpr double rad = 1.0; 0173 constexpr double degree = 0.017453292519943295; // = M_PI / 180.0 * rad; 0174 // Energy/mass/momentum, native unit GeV 0175 constexpr double GeV = 1.0; 0176 constexpr double eV = 1e-9 * GeV; 0177 constexpr double keV = 1e-6 * GeV; 0178 constexpr double MeV = 1e-3 * GeV; 0179 constexpr double TeV = 1e3 * GeV; 0180 constexpr double J = 6241509074.460763 * GeV; 0181 /// atomic mass unit u 0182 constexpr double u = 0.93149410242; 0183 // 1eV/c² == 1.782662e-36kg 0184 // 1GeV/c² == 1.782662e-27kg 0185 // -> 1kg == (1/1.782662e-27)GeV/c² 0186 // -> 1g == (1/(1e3*1.782662e-27))GeV/c² 0187 constexpr double g = 1.0 / 1.782662e-24; 0188 constexpr double kg = 1.0 / 1.782662e-27; 0189 /// Charge, native unit e (elementary charge) 0190 constexpr double e = 1.0; 0191 /// Magnetic field, native unit (eV*s)/(e*m²) 0192 /// @note Depends on speed of light in SI units 0193 constexpr double T = 0.000299792458; // = eV * s / (e * m2); 0194 constexpr double Gauss = 1e-4 * T; 0195 constexpr double kGauss = 1e-1 * T; 0196 /// Amount of substance, native unit mol 0197 constexpr double mol = 1.0; 0198 } // namespace UnitConstants 0199 0200 namespace UnitLiterals { 0201 // define user literal functions for the given unit constant 0202 #define ACTS_DEFINE_UNIT_LITERAL(name) \ 0203 constexpr double operator""_##name(long double x) { \ 0204 return ::Acts::UnitConstants::name * x; \ 0205 } \ 0206 constexpr double operator""_##name(unsigned long long x) { \ 0207 return ::Acts::UnitConstants::name * x; \ 0208 } 0209 ACTS_DEFINE_UNIT_LITERAL(fm) 0210 ACTS_DEFINE_UNIT_LITERAL(pm) 0211 ACTS_DEFINE_UNIT_LITERAL(nm) 0212 ACTS_DEFINE_UNIT_LITERAL(um) 0213 ACTS_DEFINE_UNIT_LITERAL(mm) 0214 ACTS_DEFINE_UNIT_LITERAL(cm) 0215 ACTS_DEFINE_UNIT_LITERAL(m) 0216 ACTS_DEFINE_UNIT_LITERAL(km) 0217 ACTS_DEFINE_UNIT_LITERAL(mm2) 0218 ACTS_DEFINE_UNIT_LITERAL(cm2) 0219 ACTS_DEFINE_UNIT_LITERAL(m2) 0220 ACTS_DEFINE_UNIT_LITERAL(mm3) 0221 ACTS_DEFINE_UNIT_LITERAL(cm3) 0222 ACTS_DEFINE_UNIT_LITERAL(m3) 0223 ACTS_DEFINE_UNIT_LITERAL(fs) 0224 ACTS_DEFINE_UNIT_LITERAL(ps) 0225 ACTS_DEFINE_UNIT_LITERAL(ns) 0226 ACTS_DEFINE_UNIT_LITERAL(us) 0227 ACTS_DEFINE_UNIT_LITERAL(ms) 0228 ACTS_DEFINE_UNIT_LITERAL(s) 0229 ACTS_DEFINE_UNIT_LITERAL(min) 0230 ACTS_DEFINE_UNIT_LITERAL(h) 0231 ACTS_DEFINE_UNIT_LITERAL(mrad) 0232 ACTS_DEFINE_UNIT_LITERAL(rad) 0233 ACTS_DEFINE_UNIT_LITERAL(degree) 0234 ACTS_DEFINE_UNIT_LITERAL(eV) 0235 ACTS_DEFINE_UNIT_LITERAL(keV) 0236 ACTS_DEFINE_UNIT_LITERAL(MeV) 0237 ACTS_DEFINE_UNIT_LITERAL(GeV) 0238 ACTS_DEFINE_UNIT_LITERAL(TeV) 0239 ACTS_DEFINE_UNIT_LITERAL(J) 0240 ACTS_DEFINE_UNIT_LITERAL(u) 0241 ACTS_DEFINE_UNIT_LITERAL(g) 0242 ACTS_DEFINE_UNIT_LITERAL(kg) 0243 ACTS_DEFINE_UNIT_LITERAL(e) 0244 ACTS_DEFINE_UNIT_LITERAL(T) 0245 ACTS_DEFINE_UNIT_LITERAL(Gauss) 0246 ACTS_DEFINE_UNIT_LITERAL(kGauss) 0247 ACTS_DEFINE_UNIT_LITERAL(mol) 0248 // not needed anymore. undef to prevent littering the namespace 0249 #undef ACTS_DEFINE_UNIT_LITERAL 0250 } // namespace UnitLiterals 0251 0252 /// Physical constants in native units. 0253 /// 0254 /// Unit constants are intentionally not listed. 0255 namespace PhysicalConstants { 0256 // Speed of light 0257 constexpr double c = 1.0; 0258 /// Reduced Planck constant h/2*pi. 0259 /// 0260 /// Computed from CODATA 2018 constants to double precision. 0261 constexpr double hbar = 0262 6.582119569509066e-25 * UnitConstants::GeV * UnitConstants::s; 0263 } // namespace PhysicalConstants 0264 0265 } // namespace Acts
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.3.7 LXR engine. The LXR team |
![]() ![]() |