Warning, /JETSCAPE/external_packages/googletest/googlemock/docs/CheatSheet.md is written in an unsupported language. File is not indexed.
0001
0002
0003 # Defining a Mock Class #
0004
0005 ## Mocking a Normal Class ##
0006
0007 Given
0008 ```
0009 class Foo {
0010 ...
0011 virtual ~Foo();
0012 virtual int GetSize() const = 0;
0013 virtual string Describe(const char* name) = 0;
0014 virtual string Describe(int type) = 0;
0015 virtual bool Process(Bar elem, int count) = 0;
0016 };
0017 ```
0018 (note that `~Foo()` **must** be virtual) we can define its mock as
0019 ```
0020 #include "gmock/gmock.h"
0021
0022 class MockFoo : public Foo {
0023 MOCK_CONST_METHOD0(GetSize, int());
0024 MOCK_METHOD1(Describe, string(const char* name));
0025 MOCK_METHOD1(Describe, string(int type));
0026 MOCK_METHOD2(Process, bool(Bar elem, int count));
0027 };
0028 ```
0029
0030 To create a "nice" mock object which ignores all uninteresting calls,
0031 or a "strict" mock object, which treats them as failures:
0032 ```
0033 NiceMock<MockFoo> nice_foo; // The type is a subclass of MockFoo.
0034 StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo.
0035 ```
0036
0037 ## Mocking a Class Template ##
0038
0039 To mock
0040 ```
0041 template <typename Elem>
0042 class StackInterface {
0043 public:
0044 ...
0045 virtual ~StackInterface();
0046 virtual int GetSize() const = 0;
0047 virtual void Push(const Elem& x) = 0;
0048 };
0049 ```
0050 (note that `~StackInterface()` **must** be virtual) just append `_T` to the `MOCK_*` macros:
0051 ```
0052 template <typename Elem>
0053 class MockStack : public StackInterface<Elem> {
0054 public:
0055 ...
0056 MOCK_CONST_METHOD0_T(GetSize, int());
0057 MOCK_METHOD1_T(Push, void(const Elem& x));
0058 };
0059 ```
0060
0061 ## Specifying Calling Conventions for Mock Functions ##
0062
0063 If your mock function doesn't use the default calling convention, you
0064 can specify it by appending `_WITH_CALLTYPE` to any of the macros
0065 described in the previous two sections and supplying the calling
0066 convention as the first argument to the macro. For example,
0067 ```
0068 MOCK_METHOD_1_WITH_CALLTYPE(STDMETHODCALLTYPE, Foo, bool(int n));
0069 MOCK_CONST_METHOD2_WITH_CALLTYPE(STDMETHODCALLTYPE, Bar, int(double x, double y));
0070 ```
0071 where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows.
0072
0073 # Using Mocks in Tests #
0074
0075 The typical flow is:
0076 1. Import the Google Mock names you need to use. All Google Mock names are in the `testing` namespace unless they are macros or otherwise noted.
0077 1. Create the mock objects.
0078 1. Optionally, set the default actions of the mock objects.
0079 1. Set your expectations on the mock objects (How will they be called? What wil they do?).
0080 1. Exercise code that uses the mock objects; if necessary, check the result using [Google Test](../../googletest/) assertions.
0081 1. When a mock objects is destructed, Google Mock automatically verifies that all expectations on it have been satisfied.
0082
0083 Here is an example:
0084 ```
0085 using ::testing::Return; // #1
0086
0087 TEST(BarTest, DoesThis) {
0088 MockFoo foo; // #2
0089
0090 ON_CALL(foo, GetSize()) // #3
0091 .WillByDefault(Return(1));
0092 // ... other default actions ...
0093
0094 EXPECT_CALL(foo, Describe(5)) // #4
0095 .Times(3)
0096 .WillRepeatedly(Return("Category 5"));
0097 // ... other expectations ...
0098
0099 EXPECT_EQ("good", MyProductionFunction(&foo)); // #5
0100 } // #6
0101 ```
0102
0103 # Setting Default Actions #
0104
0105 Google Mock has a **built-in default action** for any function that
0106 returns `void`, `bool`, a numeric value, or a pointer.
0107
0108 To customize the default action for functions with return type `T` globally:
0109 ```
0110 using ::testing::DefaultValue;
0111
0112 // Sets the default value to be returned. T must be CopyConstructible.
0113 DefaultValue<T>::Set(value);
0114 // Sets a factory. Will be invoked on demand. T must be MoveConstructible.
0115 // T MakeT();
0116 DefaultValue<T>::SetFactory(&MakeT);
0117 // ... use the mocks ...
0118 // Resets the default value.
0119 DefaultValue<T>::Clear();
0120 ```
0121
0122 To customize the default action for a particular method, use `ON_CALL()`:
0123 ```
0124 ON_CALL(mock_object, method(matchers))
0125 .With(multi_argument_matcher) ?
0126 .WillByDefault(action);
0127 ```
0128
0129 # Setting Expectations #
0130
0131 `EXPECT_CALL()` sets **expectations** on a mock method (How will it be
0132 called? What will it do?):
0133 ```
0134 EXPECT_CALL(mock_object, method(matchers))
0135 .With(multi_argument_matcher) ?
0136 .Times(cardinality) ?
0137 .InSequence(sequences) *
0138 .After(expectations) *
0139 .WillOnce(action) *
0140 .WillRepeatedly(action) ?
0141 .RetiresOnSaturation(); ?
0142 ```
0143
0144 If `Times()` is omitted, the cardinality is assumed to be:
0145
0146 * `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`;
0147 * `Times(n)` when there are `n WillOnce()`s but no `WillRepeatedly()`, where `n` >= 1; or
0148 * `Times(AtLeast(n))` when there are `n WillOnce()`s and a `WillRepeatedly()`, where `n` >= 0.
0149
0150 A method with no `EXPECT_CALL()` is free to be invoked _any number of times_, and the default action will be taken each time.
0151
0152 # Matchers #
0153
0154 A **matcher** matches a _single_ argument. You can use it inside
0155 `ON_CALL()` or `EXPECT_CALL()`, or use it to validate a value
0156 directly:
0157
0158 | `EXPECT_THAT(value, matcher)` | Asserts that `value` matches `matcher`. |
0159 |:------------------------------|:----------------------------------------|
0160 | `ASSERT_THAT(value, matcher)` | The same as `EXPECT_THAT(value, matcher)`, except that it generates a **fatal** failure. |
0161
0162 Built-in matchers (where `argument` is the function argument) are
0163 divided into several categories:
0164
0165 ## Wildcard ##
0166 |`_`|`argument` can be any value of the correct type.|
0167 |:--|:-----------------------------------------------|
0168 |`A<type>()` or `An<type>()`|`argument` can be any value of type `type`. |
0169
0170 ## Generic Comparison ##
0171
0172 |`Eq(value)` or `value`|`argument == value`|
0173 |:---------------------|:------------------|
0174 |`Ge(value)` |`argument >= value`|
0175 |`Gt(value)` |`argument > value` |
0176 |`Le(value)` |`argument <= value`|
0177 |`Lt(value)` |`argument < value` |
0178 |`Ne(value)` |`argument != value`|
0179 |`IsNull()` |`argument` is a `NULL` pointer (raw or smart).|
0180 |`NotNull()` |`argument` is a non-null pointer (raw or smart).|
0181 |`Ref(variable)` |`argument` is a reference to `variable`.|
0182 |`TypedEq<type>(value)`|`argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded.|
0183
0184 Except `Ref()`, these matchers make a _copy_ of `value` in case it's
0185 modified or destructed later. If the compiler complains that `value`
0186 doesn't have a public copy constructor, try wrap it in `ByRef()`,
0187 e.g. `Eq(ByRef(non_copyable_value))`. If you do that, make sure
0188 `non_copyable_value` is not changed afterwards, or the meaning of your
0189 matcher will be changed.
0190
0191 ## Floating-Point Matchers ##
0192
0193 |`DoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal.|
0194 |:-------------------|:----------------------------------------------------------------------------------------------|
0195 |`FloatEq(a_float)` |`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. |
0196 |`NanSensitiveDoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. |
0197 |`NanSensitiveFloatEq(a_float)`|`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. |
0198
0199 The above matchers use ULP-based comparison (the same as used in
0200 [Google Test](../../googletest/)). They
0201 automatically pick a reasonable error bound based on the absolute
0202 value of the expected value. `DoubleEq()` and `FloatEq()` conform to
0203 the IEEE standard, which requires comparing two NaNs for equality to
0204 return false. The `NanSensitive*` version instead treats two NaNs as
0205 equal, which is often what a user wants.
0206
0207 |`DoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal.|
0208 |:------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
0209 |`FloatNear(a_float, max_abs_error)` |`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
0210 |`NanSensitiveDoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
0211 |`NanSensitiveFloatNear(a_float, max_abs_error)`|`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
0212
0213 ## String Matchers ##
0214
0215 The `argument` can be either a C string or a C++ string object:
0216
0217 |`ContainsRegex(string)`|`argument` matches the given regular expression.|
0218 |:----------------------|:-----------------------------------------------|
0219 |`EndsWith(suffix)` |`argument` ends with string `suffix`. |
0220 |`HasSubstr(string)` |`argument` contains `string` as a sub-string. |
0221 |`MatchesRegex(string)` |`argument` matches the given regular expression with the match starting at the first character and ending at the last character.|
0222 |`StartsWith(prefix)` |`argument` starts with string `prefix`. |
0223 |`StrCaseEq(string)` |`argument` is equal to `string`, ignoring case. |
0224 |`StrCaseNe(string)` |`argument` is not equal to `string`, ignoring case.|
0225 |`StrEq(string)` |`argument` is equal to `string`. |
0226 |`StrNe(string)` |`argument` is not equal to `string`. |
0227
0228 `ContainsRegex()` and `MatchesRegex()` use the regular expression
0229 syntax defined
0230 [here](../../googletest/docs/AdvancedGuide.md#regular-expression-syntax).
0231 `StrCaseEq()`, `StrCaseNe()`, `StrEq()`, and `StrNe()` work for wide
0232 strings as well.
0233
0234 ## Container Matchers ##
0235
0236 Most STL-style containers support `==`, so you can use
0237 `Eq(expected_container)` or simply `expected_container` to match a
0238 container exactly. If you want to write the elements in-line,
0239 match them more flexibly, or get more informative messages, you can use:
0240
0241 | `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
0242 |:-------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
0243 | `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
0244 | `Each(e)` | `argument` is a container where _every_ element matches `e`, which can be either a value or a matcher. |
0245 | `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the i-th element matches `ei`, which can be a value or a matcher. 0 to 10 arguments are allowed. |
0246 | `ElementsAreArray({ e0, e1, ..., en })`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
0247 | `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
0248 | `Pointwise(m, container)` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
0249 | `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
0250 | `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under some permutation each element matches an `ei` (for a different `i`), which can be a value or a matcher. 0 to 10 arguments are allowed. |
0251 | `UnorderedElementsAreArray({ e0, e1, ..., en })`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
0252 | `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(UnorderedElementsAre(1, 2, 3))` verifies that `argument` contains elements `1`, `2`, and `3`, ignoring order. |
0253 | `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater<int>(), ElementsAre(3, 2, 1))`. |
0254
0255 Notes:
0256
0257 * These matchers can also match:
0258 1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`), and
0259 1. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, int len)` -- see [Multi-argument Matchers](#Multiargument_Matchers.md)).
0260 * The array being matched may be multi-dimensional (i.e. its elements can be arrays).
0261 * `m` in `Pointwise(m, ...)` should be a matcher for `::testing::tuple<T, U>` where `T` and `U` are the element type of the actual container and the expected container, respectively. For example, to compare two `Foo` containers where `Foo` doesn't support `operator==` but has an `Equals()` method, one might write:
0262
0263 ```
0264 using ::testing::get;
0265 MATCHER(FooEq, "") {
0266 return get<0>(arg).Equals(get<1>(arg));
0267 }
0268 ...
0269 EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
0270 ```
0271
0272 ## Member Matchers ##
0273
0274 |`Field(&class::field, m)`|`argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
0275 |:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
0276 |`Key(e)` |`argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`.|
0277 |`Pair(m1, m2)` |`argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
0278 |`Property(&class::property, m)`|`argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
0279
0280 ## Matching the Result of a Function or Functor ##
0281
0282 |`ResultOf(f, m)`|`f(argument)` matches matcher `m`, where `f` is a function or functor.|
0283 |:---------------|:---------------------------------------------------------------------|
0284
0285 ## Pointer Matchers ##
0286
0287 |`Pointee(m)`|`argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`.|
0288 |:-----------|:-----------------------------------------------------------------------------------------------|
0289 |`WhenDynamicCastTo<T>(m)`| when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
0290
0291 ## Multiargument Matchers ##
0292
0293 Technically, all matchers match a _single_ value. A "multi-argument"
0294 matcher is just one that matches a _tuple_. The following matchers can
0295 be used to match a tuple `(x, y)`:
0296
0297 |`Eq()`|`x == y`|
0298 |:-----|:-------|
0299 |`Ge()`|`x >= y`|
0300 |`Gt()`|`x > y` |
0301 |`Le()`|`x <= y`|
0302 |`Lt()`|`x < y` |
0303 |`Ne()`|`x != y`|
0304
0305 You can use the following selectors to pick a subset of the arguments
0306 (or reorder them) to participate in the matching:
0307
0308 |`AllArgs(m)`|Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`.|
0309 |:-----------|:-------------------------------------------------------------------|
0310 |`Args<N1, N2, ..., Nk>(m)`|The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`.|
0311
0312 ## Composite Matchers ##
0313
0314 You can make a matcher from one or more other matchers:
0315
0316 |`AllOf(m1, m2, ..., mn)`|`argument` matches all of the matchers `m1` to `mn`.|
0317 |:-----------------------|:---------------------------------------------------|
0318 |`AnyOf(m1, m2, ..., mn)`|`argument` matches at least one of the matchers `m1` to `mn`.|
0319 |`Not(m)` |`argument` doesn't match matcher `m`. |
0320
0321 ## Adapters for Matchers ##
0322
0323 |`MatcherCast<T>(m)`|casts matcher `m` to type `Matcher<T>`.|
0324 |:------------------|:--------------------------------------|
0325 |`SafeMatcherCast<T>(m)`| [safely casts](CookBook.md#casting-matchers) matcher `m` to type `Matcher<T>`. |
0326 |`Truly(predicate)` |`predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor.|
0327
0328 ## Matchers as Predicates ##
0329
0330 |`Matches(m)(value)`|evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor.|
0331 |:------------------|:---------------------------------------------------------------------------------------------|
0332 |`ExplainMatchResult(m, value, result_listener)`|evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. |
0333 |`Value(value, m)` |evaluates to `true` if `value` matches `m`. |
0334
0335 ## Defining Matchers ##
0336
0337 | `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
0338 |:-------------------------------------------------|:------------------------------------------------------|
0339 | `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a macher `IsDivisibleBy(n)` to match a number divisible by `n`. |
0340 | `MATCHER_P2(IsBetween, a, b, std::string(negation ? "isn't" : "is") + " between " + PrintToString(a) + " and " + PrintToString(b)) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
0341
0342 **Notes:**
0343
0344 1. The `MATCHER*` macros cannot be used inside a function or class.
0345 1. The matcher body must be _purely functional_ (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters).
0346 1. You can use `PrintToString(x)` to convert a value `x` of any type to a string.
0347
0348 ## Matchers as Test Assertions ##
0349
0350 |`ASSERT_THAT(expression, m)`|Generates a [fatal failure](../../googletest/docs/Primer.md#assertions) if the value of `expression` doesn't match matcher `m`.|
0351 |:---------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
0352 |`EXPECT_THAT(expression, m)`|Generates a non-fatal failure if the value of `expression` doesn't match matcher `m`. |
0353
0354 # Actions #
0355
0356 **Actions** specify what a mock function should do when invoked.
0357
0358 ## Returning a Value ##
0359
0360 |`Return()`|Return from a `void` mock function.|
0361 |:---------|:----------------------------------|
0362 |`Return(value)`|Return `value`. If the type of `value` is different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed.|
0363 |`ReturnArg<N>()`|Return the `N`-th (0-based) argument.|
0364 |`ReturnNew<T>(a1, ..., ak)`|Return `new T(a1, ..., ak)`; a different object is created each time.|
0365 |`ReturnNull()`|Return a null pointer. |
0366 |`ReturnPointee(ptr)`|Return the value pointed to by `ptr`.|
0367 |`ReturnRef(variable)`|Return a reference to `variable`. |
0368 |`ReturnRefOfCopy(value)`|Return a reference to a copy of `value`; the copy lives as long as the action.|
0369
0370 ## Side Effects ##
0371
0372 |`Assign(&variable, value)`|Assign `value` to variable.|
0373 |:-------------------------|:--------------------------|
0374 | `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. |
0375 | `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. |
0376 | `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. |
0377 | `SetArgReferee<N>(value)` | Assign value to the variable referenced by the `N`-th (0-based) argument. |
0378 |`SetArgPointee<N>(value)` |Assign `value` to the variable pointed by the `N`-th (0-based) argument.|
0379 |`SetArgumentPointee<N>(value)`|Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0.|
0380 |`SetArrayArgument<N>(first, last)`|Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range.|
0381 |`SetErrnoAndReturn(error, value)`|Set `errno` to `error` and return `value`.|
0382 |`Throw(exception)` |Throws the given exception, which can be any copyable value. Available since v1.1.0.|
0383
0384 ## Using a Function or a Functor as an Action ##
0385
0386 |`Invoke(f)`|Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor.|
0387 |:----------|:-----------------------------------------------------------------------------------------------------------------|
0388 |`Invoke(object_pointer, &class::method)`|Invoke the {method on the object with the arguments passed to the mock function. |
0389 |`InvokeWithoutArgs(f)`|Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. |
0390 |`InvokeWithoutArgs(object_pointer, &class::method)`|Invoke the method on the object, which takes no arguments. |
0391 |`InvokeArgument<N>(arg1, arg2, ..., argk)`|Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments.|
0392
0393 The return value of the invoked function is used as the return value
0394 of the action.
0395
0396 When defining a function or functor to be used with `Invoke*()`, you can declare any unused parameters as `Unused`:
0397 ```
0398 double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); }
0399 ...
0400 EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance));
0401 ```
0402
0403 In `InvokeArgument<N>(...)`, if an argument needs to be passed by reference, wrap it inside `ByRef()`. For example,
0404 ```
0405 InvokeArgument<2>(5, string("Hi"), ByRef(foo))
0406 ```
0407 calls the mock function's #2 argument, passing to it `5` and `string("Hi")` by value, and `foo` by reference.
0408
0409 ## Default Action ##
0410
0411 |`DoDefault()`|Do the default action (specified by `ON_CALL()` or the built-in one).|
0412 |:------------|:--------------------------------------------------------------------|
0413
0414 **Note:** due to technical reasons, `DoDefault()` cannot be used inside a composite action - trying to do so will result in a run-time error.
0415
0416 ## Composite Actions ##
0417
0418 |`DoAll(a1, a2, ..., an)`|Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void. |
0419 |:-----------------------|:-----------------------------------------------------------------------------------------------------------------------------|
0420 |`IgnoreResult(a)` |Perform action `a` and ignore its result. `a` must not return void. |
0421 |`WithArg<N>(a)` |Pass the `N`-th (0-based) argument of the mock function to action `a` and perform it. |
0422 |`WithArgs<N1, N2, ..., Nk>(a)`|Pass the selected (0-based) arguments of the mock function to action `a` and perform it. |
0423 |`WithoutArgs(a)` |Perform action `a` without any arguments. |
0424
0425 ## Defining Actions ##
0426
0427 | `ACTION(Sum) { return arg0 + arg1; }` | Defines an action `Sum()` to return the sum of the mock function's argument #0 and #1. |
0428 |:--------------------------------------|:---------------------------------------------------------------------------------------|
0429 | `ACTION_P(Plus, n) { return arg0 + n; }` | Defines an action `Plus(n)` to return the sum of the mock function's argument #0 and `n`. |
0430 | `ACTION_Pk(Foo, p1, ..., pk) { statements; }` | Defines a parameterized action `Foo(p1, ..., pk)` to execute the given `statements`. |
0431
0432 The `ACTION*` macros cannot be used inside a function or class.
0433
0434 # Cardinalities #
0435
0436 These are used in `Times()` to specify how many times a mock function will be called:
0437
0438 |`AnyNumber()`|The function can be called any number of times.|
0439 |:------------|:----------------------------------------------|
0440 |`AtLeast(n)` |The call is expected at least `n` times. |
0441 |`AtMost(n)` |The call is expected at most `n` times. |
0442 |`Between(m, n)`|The call is expected between `m` and `n` (inclusive) times.|
0443 |`Exactly(n) or n`|The call is expected exactly `n` times. In particular, the call should never happen when `n` is 0.|
0444
0445 # Expectation Order #
0446
0447 By default, the expectations can be matched in _any_ order. If some
0448 or all expectations must be matched in a given order, there are two
0449 ways to specify it. They can be used either independently or
0450 together.
0451
0452 ## The After Clause ##
0453
0454 ```
0455 using ::testing::Expectation;
0456 ...
0457 Expectation init_x = EXPECT_CALL(foo, InitX());
0458 Expectation init_y = EXPECT_CALL(foo, InitY());
0459 EXPECT_CALL(foo, Bar())
0460 .After(init_x, init_y);
0461 ```
0462 says that `Bar()` can be called only after both `InitX()` and
0463 `InitY()` have been called.
0464
0465 If you don't know how many pre-requisites an expectation has when you
0466 write it, you can use an `ExpectationSet` to collect them:
0467
0468 ```
0469 using ::testing::ExpectationSet;
0470 ...
0471 ExpectationSet all_inits;
0472 for (int i = 0; i < element_count; i++) {
0473 all_inits += EXPECT_CALL(foo, InitElement(i));
0474 }
0475 EXPECT_CALL(foo, Bar())
0476 .After(all_inits);
0477 ```
0478 says that `Bar()` can be called only after all elements have been
0479 initialized (but we don't care about which elements get initialized
0480 before the others).
0481
0482 Modifying an `ExpectationSet` after using it in an `.After()` doesn't
0483 affect the meaning of the `.After()`.
0484
0485 ## Sequences ##
0486
0487 When you have a long chain of sequential expectations, it's easier to
0488 specify the order using **sequences**, which don't require you to given
0489 each expectation in the chain a different name. <i>All expected<br>
0490 calls</i> in the same sequence must occur in the order they are
0491 specified.
0492
0493 ```
0494 using ::testing::Sequence;
0495 Sequence s1, s2;
0496 ...
0497 EXPECT_CALL(foo, Reset())
0498 .InSequence(s1, s2)
0499 .WillOnce(Return(true));
0500 EXPECT_CALL(foo, GetSize())
0501 .InSequence(s1)
0502 .WillOnce(Return(1));
0503 EXPECT_CALL(foo, Describe(A<const char*>()))
0504 .InSequence(s2)
0505 .WillOnce(Return("dummy"));
0506 ```
0507 says that `Reset()` must be called before _both_ `GetSize()` _and_
0508 `Describe()`, and the latter two can occur in any order.
0509
0510 To put many expectations in a sequence conveniently:
0511 ```
0512 using ::testing::InSequence;
0513 {
0514 InSequence dummy;
0515
0516 EXPECT_CALL(...)...;
0517 EXPECT_CALL(...)...;
0518 ...
0519 EXPECT_CALL(...)...;
0520 }
0521 ```
0522 says that all expected calls in the scope of `dummy` must occur in
0523 strict order. The name `dummy` is irrelevant.)
0524
0525 # Verifying and Resetting a Mock #
0526
0527 Google Mock will verify the expectations on a mock object when it is destructed, or you can do it earlier:
0528 ```
0529 using ::testing::Mock;
0530 ...
0531 // Verifies and removes the expectations on mock_obj;
0532 // returns true iff successful.
0533 Mock::VerifyAndClearExpectations(&mock_obj);
0534 ...
0535 // Verifies and removes the expectations on mock_obj;
0536 // also removes the default actions set by ON_CALL();
0537 // returns true iff successful.
0538 Mock::VerifyAndClear(&mock_obj);
0539 ```
0540
0541 You can also tell Google Mock that a mock object can be leaked and doesn't
0542 need to be verified:
0543 ```
0544 Mock::AllowLeak(&mock_obj);
0545 ```
0546
0547 # Mock Classes #
0548
0549 Google Mock defines a convenient mock class template
0550 ```
0551 class MockFunction<R(A1, ..., An)> {
0552 public:
0553 MOCK_METHODn(Call, R(A1, ..., An));
0554 };
0555 ```
0556 See this [recipe](CookBook.md#using-check-points) for one application of it.
0557
0558 # Flags #
0559
0560 | `--gmock_catch_leaked_mocks=0` | Don't report leaked mock objects as failures. |
0561 |:-------------------------------|:----------------------------------------------|
0562 | `--gmock_verbose=LEVEL` | Sets the default verbosity level (`info`, `warning`, or `error`) of Google Mock messages. |